Change-of-base for generalized multicategories

Rui Prezado Universidade de Aveiro

joint work with F. Lucatelli Nunes

Second Virtual Workshop on Double Categories

30 October 2024

Original motivation

Theorem (Lucatelli Nunes 2018; Cottrell, Fujii, Power 2017) For a suitable cartesian monoidal category \mathcal{V} , we have an adjunction

whose left adjoint is fully faithful.

Enriched-internal dichotomy as change-of-base

We have

which, in turn, induces the adjunction

Enriched-internal dichotomy as change-of-base

- Can we obtain a similar result for generalized multicategories?
- Can we also exhibit this as a change-of-base adjunction?

Vector spaces and multilinear maps

Let V_1, \ldots, V_n, W be vector spaces.

A multilinear map $f: (V_1, \ldots, V_n) \to W$ consists of a function

$$f: V_1 \times \ldots \times V_n \to W$$

that is linear in each component:

$$f(v_1,\ldots,v_j+\lambda w,\ldots,v_n)=f(v_1,\ldots,v_n)+\lambda f(v_1,\ldots,w,\ldots,v_n)$$

Vector spaces and multilinear maps

Let $f: (V_1, \ldots, V_n) \to W$ be a multilinear map.

- If n = 1, f is a linear map.
- If we have a list of multilinear maps

$$g_j: (U_{j1},\ldots,U_{jk_j}) \to V_j,$$

then the function

$$f \circ (g_1 \times \ldots \times g_n)$$

defines a multilinear map, which is denoted

$$f \circ (g_1, \ldots, g_n) \colon (U_{11}, \ldots, U_{1k_1}, \ldots, U_{n1}, \ldots, U_{nk_n}) \to W$$

${\rm Multicategory} \ {\rm Vect}$

The composition operation satisfies suitable associativity and identity laws.

Hence, vector spaces and multilinear maps form a *multicategory*.

Multicategories

Let X^* be the free monoid generated by a set X. A multicategory \mathcal{M} consists of

- a set \mathcal{M}_0 ,
- a span

- a function $s_0 \colon \mathcal{M}_0 \to \mathcal{M}_1$ (units),
- a function $d_1: \mathcal{M}_2 \to \mathcal{M}_1$ (composition),

satisfying suitable associativity and identity properties, where

$$\begin{array}{c} \mathcal{M}_2 \longrightarrow \mathcal{M}_1 \\ \downarrow & & \downarrow^{d_1} \\ \mathcal{M}_1^* \xrightarrow[]{d_0^*} \mathcal{M}_0^* \end{array}$$

Generalized multicategories

Multicategories generalize categories by allowing the domain to be a finite list of objects.

By abstracting the "shape" of the domain of a morphism, we obtain the notion of *generalized multicategory*.

These "shapes" are modeled by suitable monads.

Topological spaces

Let ${\mathcal U}$ be the ultrafilter monad on $\mathsf{Set}.$

Theorem (Barr, 1970)

A topological space X is characterized by

- its underlying set X,
- a convergence relation $\rightsquigarrow \subseteq \mathcal{U}(X) \times X$: we have $\mathfrak{x} \rightsquigarrow x$ whenever the ultrafilter \mathfrak{x} on X converges to x.
- the convergence relation must satisfy suitable reflexivity and transitivity conditions.

Topological spaces

- Principal ultrafilters: $\mathfrak{p}: X \to \mathcal{U}(X)$.
- Flattening ultrafilters of ultrafilters: $\mathfrak{m} : \mathcal{UU}(X) \to \mathcal{U}(X)$.
- Reflexivity: $\mathfrak{p}(x) \rightsquigarrow x$.
- Transitivity: If $\mathfrak{X} \rightsquigarrow^* \mathfrak{x}$ and $\mathfrak{x} \rightsquigarrow x$, then $\mathfrak{m}(\mathfrak{X}) \rightsquigarrow x$.

Thus, a topological space is a generalized ordered set.

 $\mathsf{Top}\simeq (\mathcal{U},2)\text{-}\mathsf{Cat}$

Settings for generalized multicategories

- \mathcal{V} category with finite limits.
- Cartesian monad T = (T, m, e) on \mathcal{V} .

$$\begin{array}{cccc} TT(x) & \xrightarrow{m_x} T(x) & x & \xrightarrow{e_x} T(x) \\ TT(f) & & \downarrow^{T(f)} & f & & \downarrow^{T(f)} \\ TT(y) & \xrightarrow{m_y} T(y) & y & \xrightarrow{e_y} T(y) \end{array}$$

Internal *T*-categories (Burroni 1971, Hermida 2000) *T* induces a suitable monad on $\text{Span}(\mathcal{V})$.

The category $Cat(T, \mathcal{V})$ of internal *T*-categories is given by a suitable notion of *lax algebras* over *T*.

Settings for generalized multicategories

- \mathcal{V} distributive monoidal category.
- A suitable lax monad T on \mathcal{V} -Mat.

Enriched T-categories (Clementino, Tholen 2003)

The category (T, \mathcal{V}) -Cat of enriched *T*-categories is given by a suitable notion of *lax algebras* over *T*.

Settings for generalized multicategories

Definition (Cruttwell, Shulman 2010)

Let VDbCat be the 2-category of

- virtual double categories,
- functors of virtual double categories,
- vertical transformations between such functors.

A *setting* for generalized multicategories is a monad in VDbCat.

Horizontal lax algebras

Let T = (T, m, e) be a monad on a virtual double category \mathbb{V} .

T-monoids (Cruttwell, Shulman 2010)

A horizontal lax T-algebra consists of a quadruple

- an object x of \mathbb{V} ,
- a horizontal morphism $a: T(x) \to x$,
- a unit 2-cell η and a multiplication 2-cell μ given by

satisfying suitable identity and associativity conditions.

The problem with of change-of-base

Monad morphisms (Street, 1972) Let

- T be a monad on \mathbb{V} ,
- S be a monad on \mathbb{W} .

A monad morphism $T \to S$ consists of:

• A functor $F \colon \mathbb{V} \to \mathbb{W}$,

• A vertical transformation $\phi \colon SF \to FT$ satisfying suitable properties.

The problem with of change-of-base

 $\alpha = \langle \rangle$

Let $(F, \phi) \colon T \to S$ be a monad morphism.

If (x, a, η, μ) is a horizontal lax *T*-algebra, how do we obtain the horizontal lax *S*-algebra induced by (F, ϕ) ?

The solution we propose:

- "Flip" ϕ into a "horizontal transformation".
- Have horizontal composites.

Let $\mathbb D$ be a pseudodouble category.

A conjoint of a vertical morphism $f\colon x\to y$ in $\mathbb D$ consists of

- A horizontal morphism $r: y \to x$ in \mathbb{D} ,
- Unit and counit 2-cells in \mathbb{D}

• Satisfying $\epsilon \circ \eta = 1_f$ and $\eta \cdot \epsilon \cong id_r$. We write $r = f^*$ and $f \dashv f^*$.

Companions are defined dually (vertical or horizontal), and we write $f_! \dashv f$.

Lemma

If \mathbb{D},\mathbb{E} are pseudodouble categories, then we have two pseudodouble categories

 $\mathsf{Lax}_{\mathsf{lax}}(\mathbb{D},\mathbb{E}) \qquad \mathsf{Lax}_{\mathsf{opl}}(\mathbb{D},\mathbb{E})$

that have

- lax functors as objects,
- vertical transformations as vertical morphisms,
- lax (respectively, oplax) horizontal transformations as horizontal morphisms,
- generalized modifications as 2-cells.

A pseudodouble category \mathbb{D} is *conjoint-closed* if every vertical morphism has a conjoint. Dually, we have *companion-closed* pseudodouble categories.

Theorem (P., Lucatelli Nunes 2023)

Let $\mathbb D$ and $\mathbb E$ be pseudodouble categories.

- If \mathbb{E} is conjoint-closed, then $\mathsf{Lax}_{\mathsf{lax}}(\mathbb{D}, \mathbb{E})$ is conjoint-closed.
- If \mathbb{E} is companion-closed, then $\mathsf{Lax}_{\mathsf{opl}}(\mathbb{D}, \mathbb{E})$ is companion-closed.

Hence, if

- \mathbb{E} is an equipment,
- $F, G: \mathbb{D} \to \mathbb{E}$ are lax functors,
- $\phi \colon F \to G$ is a vertical transformation,

then we have

- a lax horizontal transformation $\phi^* \colon G \to F$, with $\phi \dashv \phi^*$,
- an oplax horizontal transformation $\phi_! \colon F \to G$, with $\phi_! \dashv \phi$.

We say ϕ has a *strong* conjoint/companion if $\phi^*/\phi_!$ is a strong horizontal transformation.

Change-of-base for horizontal lax algebras

- Ambient 2-category: $\mathsf{Equip}_{\mathsf{lax}}$ of equipments, lax functors, vertical transformations.
- We let T, S be monads on the respective equipments \mathbb{D}, \mathbb{E} .
- We let $(F, \phi) \colon T \to S$ be a monad morphism, such that ϕ and $T(\phi)$ have strong conjoints.
- We let $(G, \psi) \colon S \to T$ be a monad opmorphism.

Let $\mathbb{H}LaxAlg(T)$ be the category of horizontal lax *T*-algebras and respective morphisms. Theorem (P., Lucatelli Nunes 2023)

The correspondences

 $\begin{aligned} (x, a, \eta, \mu) \mapsto (F(x), F(a) \cdot \phi_x^*, F_!(\eta), F_!(\mu)) & (y, b, \eta, \mu) \mapsto (G(y), G(b) \cdot \psi_{!y}, G_!(\eta), G_!(\mu)) \\ \text{define functors} \end{aligned}$

 $(F,\phi)_! \colon \mathbb{H}\mathsf{LaxAlg}(T) \to \mathbb{H}\mathsf{LaxAlg}(S), \qquad \qquad (G,\psi)^* \colon \mathbb{H}\mathsf{LaxAlg}(S) \to \mathbb{H}\mathsf{LaxAlg}(T).$

Back to our motivation

Let \mathcal{V} be a suitable category, let T be a cartesian monad on \mathcal{V} .

Can we obtain an adjunction

with our tools?

Induced lax monad

Let \mathcal{V} be lextensive, T cartesian monad on \mathcal{V} .

Induced lax monad

Let \mathcal{V} be lextensive, T cartesian monad on \mathcal{V} .

Generalized enriched-internal dichotomy

Theorem (P., Lucatelli Nunes 2023)

Under suitable^{*} conditions, we have an adjunction

Theorem (P., Lucatelli Nunes 2023) If $-\cdot 1$: Set $\rightarrow \mathcal{V}$ is fully faithful, then so is $-\cdot 1$: $(\overline{T}, \mathcal{V})$ -Cat \rightarrow Cat (T, \mathcal{V}) . Thank you!