Change-of-base for generalized multicategories

Rui Prezado Universidade de Aveiro

joint work with F. Lucatelli Nunes

Second Virtual Workshop on Double Categories

30 October 2024

Original motivation

Theorem (Lucatelli Nunes 2018; Cottrell, Fujii, Power 2017) For a suitable cartesian monoidal category $\mathcal V$, we have an adjunction

whose left adjoint is fully faithful.

Enriched-internal dichotomy as change-of-base

We have

which, in turn, induces the adjunction

Enriched-internal dichotomy as change-of-base

- Can we obtain a similar result for generalized multicategories?
- Can we also exhibit this as a change-of-base adjunction?

Vector spaces and multilinear maps

Let V_1, \ldots, V_n, W be vector spaces.

A multilinear map $f: (V_1, \ldots, V_n) \to W$ consists of a function

 $f: V_1 \times \ldots \times V_n \to W$

that is linear in each component:

$$
f(v_1,\ldots,v_j+\lambda w,\ldots,v_n)=f(v_1,\ldots,v_n)+\lambda f(v_1,\ldots,w,\ldots,v_n)
$$

Vector spaces and multilinear maps

Let $f: (V_1, \ldots, V_n) \to W$ be a multilinear map.

- If $n = 1$, f is a linear map.
- If we have a list of multilinear maps

$$
g_j\colon (U_{j1},\ldots,U_{jk_j})\to V_j,
$$

then the function

$$
f\circ (g_1\times \ldots \times g_n)
$$

defines a multilinear map, which is denoted

$$
f \circ (g_1, \ldots, g_n) \colon (U_{11}, \ldots, U_{1k_1}, \ldots, U_{n1}, \ldots, U_{nk_n}) \to W
$$

Multicategory Vect

The composition operation satisfies suitable associativity and identity laws.

Hence, vector spaces and multilinear maps form a multicategory.

Multicategories

Let X^* be the free monoid generated by a set X. A multicategory M consists of

- a set \mathcal{M}_0 ,
- a span

- a function $s_0: \mathcal{M}_0 \to \mathcal{M}_1$ (units),
- a function $d_1: \mathcal{M}_2 \to \mathcal{M}_1$ (composition),

satisfying suitable associativity and identity properties, where

$$
\begin{array}{ccc}\nM_2 & \longrightarrow & \mathcal{M}_1 \\
\downarrow & & \downarrow_{a_1} \\
\mathcal{M}_1^* & \xrightarrow{d_0^*} & \mathcal{M}_0^*\n\end{array}
$$

Generalized multicategories

Multicategories generalize categories by allowing the domain to be a finite list of objects.

By abstracting the "shape" of the domain of a morphism, we obtain the notion of generalized multicategory.

These "shapes" are modeled by suitable monads.

Topological spaces

Let U be the ultrafilter monad on Set.

Theorem (Barr, 1970)

A topological space X is characterized by

- its underlying set X ,
- a convergence relation $\rightsquigarrow \subseteq \mathcal{U}(X) \times X$: we have $\mathfrak{x} \rightsquigarrow x$ whenever the ultrafilter \mathfrak{x} on X converges to x.
- the convergence relation must satisfy suitable reflexivity and transitivity conditions.

Topological spaces

- Principal ultrafilters: $\mathfrak{p}: X \to \mathcal{U}(X)$.
- Flattening ultrafilters of ultrafilters: $\mathfrak{m}: \mathcal{U}\mathcal{U}(X) \to \mathcal{U}(X)$.
- Reflexivity: $\mathfrak{p}(x) \rightsquigarrow x$.
- Transitivity: If $\mathfrak{X} \rightsquigarrow^* \mathfrak{x}$ and $\mathfrak{x} \rightsquigarrow x$, then $\mathfrak{m}(\mathfrak{X}) \rightsquigarrow x$.

Thus, a topological space is a generalized ordered set.

Top $\simeq (\mathcal{U}, 2)$ -Cat

Settings for generalized multicategories

- ν category with finite limits.
- Cartesian monad $T = (T, m, e)$ on $\mathcal V$.

$$
\begin{array}{ccc}\nTT(x) & \xrightarrow{m_x} & T(x) & x & \xrightarrow{e_x} & T(x) \\
TT(f) & & & & & \downarrow \\
TT(y) & \xrightarrow{m_y} & T(y) & & y & \xrightarrow{e_y} & T(y)\n\end{array}
$$

Internal T-categories (Burroni 1971, Hermida 2000) T induces a suitable monad on $Span(V)$.

The category $\text{Cat}(T, \mathcal{V})$ of internal T-categories is given by a suitable notion of lax algebras over T.

Settings for generalized multicategories

- *V* distributive monoidal category.
- A suitable lax monad T on V -Mat.

Enriched T-categories (Clementino, Tholen 2003)

The category (T, V) -Cat of enriched T-categories is given by a suitable notion of lax algebras over T.

Settings for generalized multicategories

Definition (Cruttwell, Shulman 2010)

Let VDbCat be the 2-category of

- virtual double categories,
- functors of virtual double categories,
- vertical transformations between such functors.

A setting for generalized multicategories is a monad in VDbCat.

Horizontal lax algebras

Let $T = (T, m, e)$ be a monad on a virtual double category V.

T-monoids (Cruttwell, Shulman 2010)

A horizontal lax T-algebra consists of a quadruple

- an object x of V ,
- a horizontal morphism $a: T(x) \to x$,
- a unit 2-cell η and a multiplication 2-cell μ given by

satisfying suitable identity and associativity conditions.

The problem with of change-of-base

Monad morphisms (Street, 1972) Let

- T be a monad on V ,
- S be a monad on W .

A monad morphism $T \rightarrow S$ consists of:

• A functor $F: \mathbb{V} \to \mathbb{W}$,

• A vertical transformation $\phi: SF \to FT$ satisfying suitable properties.

The problem with of change-of-base

 \sim \sim \sim \sim

Let (F, ϕ) : $T \to S$ be a monad morphism.

If (x, a, η, μ) is a horizontal lax T-algebra, how do we obtain the horizontal lax S-algebra induced by (F, ϕ) ?

$$
SF(x) \xrightarrow{?} F(x) \qquad \phi_x \downarrow
$$

$$
FT(x) \xrightarrow{F(x)} F(x)
$$

The solution we propose:

- "Flip" ϕ into a "horizontal transformation".
- Have horizontal composites.

Let $\mathbb D$ be a pseudodouble category.

A conjoint of a vertical morphism $f: x \to y$ in $\mathbb D$ consists of

- A horizontal morphism $r: y \to x$ in \mathbb{D} ,
- Unit and counit 2-cells in D

$$
\begin{array}{ccc}\nx & \xrightarrow{1_x} x & y & \xrightarrow{r} x \\
f \downarrow & \eta & \parallel & \parallel & \epsilon \\
y & \xrightarrow{r} x & y & \xrightarrow{1_y} y\n\end{array}
$$

• Satisfying $\epsilon \circ \eta = 1_f$ and $\eta \cdot \epsilon \cong id_r$. We write $r = f^*$ and $f \dashv f^*$.

Companions are defined dually (vertical or horizontal), and we write $f_! \dashv f$.

Lemma

If \mathbb{D}, \mathbb{E} are pseudodouble categories, then we have two pseudodouble categories

 $\text{Lax}_{\text{las}}(\mathbb{D}, \mathbb{E})$ $\text{Lax}_{\text{pol}}(\mathbb{D}, \mathbb{E})$

that have

- lax functors as objects,
- vertical transformations as vertical morphisms,
- lax (respectively, oplax) horizontal transformations as horizontal morphisms,
- generalized modifications as 2-cells.

A pseudodouble category $\mathbb D$ is *conjoint-closed* if every vertical morphism has a conjoint. Dually, we have companion-closed pseudodouble categories.

Theorem (P., Lucatelli Nunes 2023)

Let $\mathbb D$ and $\mathbb E$ be pseudodouble categories.

- If $\mathbb E$ is conjoint-closed, then $\text{Lax}_{\text{las}}(\mathbb D, \mathbb E)$ is conjoint-closed.
- If $\mathbb E$ is companion-closed, then $\text{Lax}_{\text{on}}(\mathbb D, \mathbb E)$ is companion-closed.

Hence, if

- E is an equipment,
- $F, G: \mathbb{D} \to \mathbb{E}$ are lax functors,
- $\phi: F \to G$ is a vertical transformation,

then we have

- a lax horizontal transformation $\phi^*: G \to F$, with $\phi \dashv \phi^*$,
- an oplax horizontal transformation $\phi_! : F \to G$, with $\phi_! \dashv \phi$.

We say ϕ has a *strong* conjoint/companion if $\phi^*/\phi_!$ is a strong horizontal transformation.

Change-of-base for horizontal lax algebras

- Ambient 2-category: $\text{Equip}_{\text{law}}$ of equipments, lax functors, vertical transformations.
- We let T, S be monads on the respective equipments $\mathbb{D}, \mathbb{E}.$
- We let (F, ϕ) : $T \to S$ be a monad morphism, such that ϕ and $T(\phi)$ have strong conjoints.
- We let (G, ψ) : $S \to T$ be a monad opmorphism.

Let \mathbb{H} LaxAlg(T) be the category of horizontal lax T-algebras and respective morphisms. Theorem (P., Lucatelli Nunes 2023)

The correspondences

 $(x, a, \eta, \mu) \mapsto (F(x), F(a) \cdot \phi_x^*$ $(y, b, \eta, \mu) \mapsto (G(y), G(b) \cdot \psi_{!y}, G_{!}(\eta), G_{!}(\mu))$ define functors

 (F, ϕ) !: \mathbb{H} Lax $\mathsf{Alg}(T) \to \mathbb{H}$ Lax $\mathsf{Alg}(S)$, (G, ψ) $*$: \mathbb{H} Lax $\mathsf{Alg}(S)$ → \mathbb{H} Lax $\mathsf{Alg}(T)$.

Back to our motivation

Let V be a suitable category, let T be a cartesian monad on V .

Can we obtain an adjunction

with our tools?

Induced lax monad

Let V be lextensive, T cartesian monad on V .

Induced lax monad

Let V be lextensive, T cartesian monad on V .

Generalized enriched-internal dichotomy

Theorem (P., Lucatelli Nunes 2023)

Under suitable* conditions, we have an adjunction

Theorem (P., Lucatelli Nunes 2023) If $- \cdot 1$: Set $\rightarrow \mathcal{V}$ is fully faithful, then so is $- \cdot 1$: $(\overline{T}, \mathcal{V})$ -Cat \rightarrow Cat (T, \mathcal{V}) . Thank you!