Double categories and weak units

Simona Paoli¹

¹Department of Mathematics University of Aberdeen (UK)

Virtual double categories workshop

Simona Paoli (University of Aberdeen)

November 2022 1/44

- The classical notion of bicategory captures a 2-dimensional structure with weakly associative and weakly unital composition laws. This requires explicit description of the coherence axioms.
- In the modelling approach to weak 2-categories, a combinatorial machinery is set up so that compositions are weakly associative and weakly unital but the coherence axioms do not have to be stated explicitly.

- Several models of weak 2-categories exits and have been shown to be equivalent to bicategories. They also have higher dimensional generalizations.
- Weakly globular double categories Cat²_{wg}, introduced by P. and Pronk, is a model based on a full subcategory of strict double categories.
- Fair 2-categories Fair², introduced by J.Kock, model weak 2-categories with strict associativity and weak unit laws.

A TEAL A TEAL

- We aim to directly compare Fair² and Cat²_{wg}, without using the equivalences of Fair² and Cat²_{wg} with bicategories.
- This will highlight interesting features of weakly globular double categories and pave the way to higher dimensional generalizations (weak units conjecture).

Overview

- - From Cat²_{wg} to Fair²
 - From Fair² to Cat²_{wg}
 - Sketch of proof of main result

モトィモト

Segal maps

Let $X \in [\Delta^{op}, C]$ be a simplicial object in a category C with pullbacks. Denote $X[k] = X_k$.

For each $k \ge 2$, let $\nu_i : X_k \to X_1$, $\nu_j = X(r_j)$, $r_j(0) = j - 1$, $r_j(1) = j$

There is a unique map, called Segal map

$$\eta_k: X_k \to X_1 \times_{X_0} \cdots \times_{X_0} X_1$$
.

э

(日)

Segal maps and internal categories

There is a nerve functor

$$N: Cat \ \mathcal{C} \to [\Delta^{op}, \mathcal{C}]$$

 $X \in Cat \mathcal{C}$

$$NX \quad \cdots X_1 \times_{X_0} X_1 \times_{X_0} X_1 \xrightarrow{\Longrightarrow} X_1 \times_{X_0} X_1 \xrightarrow{\Longrightarrow} X_1 \xrightarrow{\longrightarrow} X_0$$

Fact: $X \in [\Delta^{op}, C]$ is the nerve of an internal category in C if and only if all the Segal maps $\eta_k : X_k \to X_1 \times_{X_0} \stackrel{k}{\cdots} \times_{X_0} X_1$ are isomorphisms.

Weakly globular double categories

- $X \in [\Delta^{op}, Cat]$ is in Cat^2_{wg} if
 - i) The Segal maps are isomorphisms:

$$X_k \cong X_1 \times_{X_0} \stackrel{k}{\cdots} \times_{X_0} X_1 \qquad k \ge 2$$

- ii) Weak globularity condition: X_0 is an equivalence relation; thus $\gamma : X_0 \to X_0^d$ is an equivalence of categories, where X_0^d is the discrete category on the set of connected components of X_0 .
- iii) The induced Segal maps are equivalences of categories:

$$X_k \cong X_1 imes_{X_0} \stackrel{k}{\cdots} imes_{X_0} X_1 \stackrel{\simeq}{\longrightarrow} X_1 imes_{X_0^d} \stackrel{k}{\cdots} imes_{X_0^d} X_1 \qquad k \ge 2$$

Weak globularity condition

- The set underlying X_0^d plays the role of set of objects.
- The induced Segal map condition is equivalent to

Truncation functor and hom category

- Let p : Cat → Set be the isomorphism classes of objects functor.
- There is a truncation functor

$$p^{(1)}: \operatorname{Cat}^2_{\operatorname{wg}} o \operatorname{Cat},$$

$$(p^{(1)}X)_k = pX_k$$
 for all $k \ge 0$.

• Given $X \in \operatorname{Cat}^2_{wg}$, $a, b \in X_0^d$ let X(a, b) be the fibre at (a, b) of

$$X_1 \xrightarrow{(\partial_0,\partial_1)} X_0 \times X_0 \xrightarrow{(\gamma,\gamma)} X_0^d \times X_0^d.$$

Simona Paoli	(Universit	y of Aberdeen)
--------------	------------	----------------

2-Equivalences in Cat²_{wg}

Definition

A morphism $F: X \to Y$ in Cat^2_{wq} is a 2-equivalence if

(i) For all $a, b \in X_0^d$ $F(a, b) : X(a, b) \to Y(Fa, Fb)$ is an equivalence of categories.

(ii) $p^{(1)}F$ is an equivalence of categories.

3

Coloured categories

- A coloured category is a category C with a subcategory W containing all objects. The arrows of W are called coloured arrows.
- Morphisms of colored categories are colour-preserving functors.
- A coloured graph is a graph in which some of the edges have been singled out as colours.
- To form the free coloured category on a coloured graph take the free category on the whole graph an let W be the free category on the coloured part of the graph.

Coloured ordinals

- A (finite) coloured ordinal is a free coloured category on a (finite) linearly ordered coloured graph.
- Let T be the category of finite non-empty coloured ordinals

Morphisms are as usual ordinals for the dots but a link can be set but may not be broken.

• Functor $\pi : \mathbb{T} \to \Delta$ contracting all the links.

Semi-categories

- Let Δ_{mono} be obtained from Δ by removing the degeneracy maps.
- If $X \in [\Delta_{mono}^{op}, Set]$ satisfies the Segal condition

$$X_k \cong X_1 imes_{X_0} \stackrel{k}{\cdots} imes_{X_0} X_1 \qquad k \geq 2$$

then X is a semi-category.

 A coloured semi-category is a semi-category with a sub-semi-category comprising all objets. A morphism between coloured semi-categories is a colour preserving semi-functor.

The fat delta

Definition (J. Kock)

The fat delta Δ is the category of all finite non-empty coloured semi-ordinals.

- One can naturally identify $\underline{\Delta} = \mathbb{T}_{mono}$.
- The functor $\pi:\mathbb{T}\to\Delta$ gives rise to a functor

$$\pi: \underline{\Delta} = \mathbb{T}_{mono} \rightarrow \Delta_{mono} \hookrightarrow \Delta$$
 .

э

The fat delta, cont.

 There is a 'horizontal inclusion' Δ_{mono} → <u>Δ</u> interpreting a semi-ordinal as a coloured semi-ordinal with nothing coloured

$$\bullet \longrightarrow \bullet \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \cdots$$

 There is a 'vertical inclusion' ∆_{mono} → <u>∆</u> interpreting a semi-ordinal as coloured semi-ordinal with everything coloured

$$\bullet \longrightarrow \mathbf{1} \Longrightarrow \mathbf{1} \Longrightarrow \mathbf{1} \Longrightarrow \cdots$$

- A TE N - A TE N

• Let Cat be the coloured category with coloured arrows the equivalences of categories.

Definition (J. Kock)

A fair 2-category is a colour-preserving functor $X : \underline{\Delta}^{op} \to Cat$ preserving discrete objects and pullbacks over discrete objects.

Denote

$$\mathcal{O} = X_{\bullet}, \qquad \mathcal{A} = X_{\bullet}, \qquad \mathcal{U} = X_{\bullet}$$

and think of these as objects, arrows, weak identity arrows.

< 日 > < 同 > < 回 > < 回 > < □ > <

Remarks

• Let $\underline{m} + \underline{n}$ be the pushout in $\underline{\Delta}^{op}$ of $\underline{m} \leftarrow \bullet \rightarrow \underline{n}$. Then we have a pullback

Hence, the restriction to either copy of Δ^{op}_{mono} ⊂ <u>Δ</u>^{op} is a Δ^{op}_{mono}-diagram satisfying the Segal condition: A and U are semi-categories.

• It can be shown that the two maps $\mathcal{U} \rightrightarrows \mathcal{O}$ coincide.

Simona Paoli	(Universit	y of Aberdeen)	
--------------	------------	----------------	--

・ロト ・四ト ・ヨト ・ヨト

To give a fair 2-category X it is enough to give the following data:

a) A discrete category of objects $\mathcal{O} = X_{\bullet}$, a category of arrows $\mathcal{A} = X_{\bullet}$ and a category of weak units $\mathcal{U} = X_{\bullet}$ together with a commuting diagram

Fair 2-categories, cont.

b) Semi-category structures on $\mathcal{U} \Longrightarrow \mathcal{O}$ and $\mathcal{A} \Longrightarrow \mathcal{O}$ such that

is a semi-functor.

c) The maps $\mathcal{U} \longrightarrow \mathcal{O}$ as well as the composition maps

$$\mathcal{U} \times_{\mathcal{O}} \mathcal{A} \to \mathcal{A} \leftarrow \mathcal{A} \times_{\mathcal{O}} \mathcal{U}, \qquad \mathcal{U} \times_{\mathcal{O}} \mathcal{U} \to \mathcal{U}$$

which are images of

are equivalences of categories.

2-Equivalences in Fair²

• There is a truncation functor

$$p^{(1)}$$
 : Fair² $ightarrow$ Cat

given by $(p^{(1)}X)_n = p(X_n)$ for all $n \in \Delta_{mono}^{op}$.

• Given $a, b \in X_0$ let X(a, b) be the fiber at (a, b) of the map $X_1 \xrightarrow{(\partial_0, \partial_1)} X_0 \times X_0$.

Definition

A morphism $f: X \to Y$ in Fair² is a 2-equivalence if

- (i) For all $a, b \in X_0$, $f_{(a,b)} : X(a,b) \to Y(fa, fb)$ is an equivalence of categories.
- (ii) $p^{(1)}f$ is an equivalence of categories.

э.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Segal-type models

Definition

The category Ta_{wg}^2 of weakly globular Tamsamani 2-categories is the full subcategory of $[\Delta^{op}, Cat]$ whose objects *X* are such that

i) X_0 is an equivalence relation.

ii) The induced Segal maps $\hat{\mu}_k : X_k \to X_1 \times_{X_0^d} \stackrel{k}{\cdots} \times_{X_0^d} X_1$ are equivalences of categories for all $k \ge 2$.

Segal maps for pseudo-functors

Let $H \in Ps[\Delta^{\infty}, Cat]$ be such that H_0 is discrete. The following diagram in Cat commutes

Definition

The category SegPs[Δ^{op} , Cat] is the full subcategory of Ps[Δ^{op} , Cat] whose objects *H* are such that

- i) H_0 is discrete.
- ii) All Segal maps are isomorphisms for all $k \ge 2$

$$H_k \cong H_1 \times_{H_0} \stackrel{k}{\cdots} \times_{H_0} H_1$$
.

3

The functor Tr₂

Theorem

There is a functor

$${\it Tr}_2: {
m Ta}^2_{
m wg} o {
m SegPs}[\Delta^{op}, {
m Cat}] \ ({\it Tr}_2 X)_k = \left\{ egin{array}{c} X_0^d, & k=0 \ X_1, & k=1 \ X_1 imes_{X_0^d}^{-k} \cdots imes_{X_0^d}^{-k} X_1, & k>1 \end{array}
ight.$$

Further, the strictification functor $St : Ps[\Delta^{op}, Cat] \rightarrow [\Delta^{op}, Cat]$ restricts to a functor

$$St\,: { t SegPs}[\Delta^{^{op}},{ t Cat}\,] o { t Cat}^2_{ extsf{wg}}$$
 .

イロト 不得 トイヨト イヨト 二日

Strong Segalic pseudo-functors

The inclusion functor *i* : Δ^{op}_{mono} → Δ^{op} induces a functor *i*^{*} : Ps[Δ^{op}, Cat] → Ps[Δ^{op}_{mono}, Cat].

Definition

A Segalic pseudo-functor $X \in \text{SegPs}[\Delta^{op}, \text{Cat}]$ is called strong if $i^*X \in [\Delta^{op}_{mono}, \text{Cat}]$. A morphism of strong Segalic pseudo-functors is a pseudo-natural transformation F in SegPs $[\Delta^{op}, \text{Cat}]$ such that i^*F is a natural transformation in $[\Delta^{op}_{mono}, \text{Cat}]$.

 We denote by SSegPs[Δ^{ορ}, Cat] the category of strong Segalic pseudo-functors, so that

$$i^*: SSegPs[\Delta^{^{op}}, Cat] \rightarrow [\Delta^{^{op}}_{mono}, Cat]$$
 .

Cat²_{wg} and strong Segalic pseudo-functors

Proposition

Simona Paoli (Unive

The restriction to $Cat_{wg}^2 \subset Ta_{wg}^2$ of the functor $Tr_2 : Ta_{wg}^2 \rightarrow SegPs[\Delta^{op}, Cat]$ is a functor

 $\mathit{Tr}_2: Cat^2_{wg}
ightarrow SSegPs[\Delta^{op}, Cat].$

• To show that $i^* Tr_2 X \in [\Delta_{mono}^{op}, Cat]$ we show that

$$\partial'_i = Tr_2 \partial_i : (Tr_2 X)_n \to (Tr_2 X)_{n-1}$$

satisfy the semi-simplicial identities $\partial'_i \partial'_i = \partial'_{i-1} \partial'_i$, i < j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ののの

Idea of proof

• The induced Segal maps $(k \ge 2)$

$$\hat{\mu}_k: X_k = X_1 \times_{X_0} \stackrel{k}{\cdots} \times_{X_0} X_1 \to X_1 \times_{X_0^d} \stackrel{k}{\cdots} \times_{X_0^d} X_1 = (Tr_2 X)_k$$

is injective on objects, thus $\nu_k \hat{\mu}_k = Id$, where ν_k is the pseudo-inverse.

• Thus for instance for k > 2

$$(Tr_2X)_{k+1} \xrightarrow{\partial'_j} (Tr_2X)_k \xrightarrow{\partial'_i} (Tr_2X)_{k-1}$$

$$\partial'_i\partial'_j = \hat{\mu}_{k-1}\partial_i\nu_k\hat{\mu}_k\partial_j\nu_{k+1} = \hat{\mu}_{k-1}\partial_i\partial_j\nu_{k+1} =$$

$$= \hat{\mu}_{k-1}\partial_{j-1}\partial_i\nu_{k+1} = \hat{\mu}_{k-1}\partial_{j-1}\nu_k\hat{\mu}_k\partial_i\nu_{k+1} = \partial'_{j-1}\partial'_i.$$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

From Cat²_{wg} to Fair²

Theorem There is a functor $F_2 : \operatorname{Cat}^2_{wg} \to \operatorname{Fair}^2$ such that $(F_2X)_0 = X_0^d$, $p^{(1)}X = p^{(1)}F_2X$ and, for each $a, b \in X_0^d$, $X(a,b) \cong F_2X(a,b)$. F_2 preserves 2-equivalences.

Idea of proof

• Given $X \in \operatorname{Cat}^2_{wg}$ define

$$(F_2X)_{\bullet} = X_0^d, \qquad (F_1X)_{\bullet} = X_1, \qquad (F_2X)_{\bullet} = X_0$$

with the commuting diagram

where $\partial_0, \partial_1 : X_1 \to X_0$ (resp. $\sigma_0 : X_0 \to X_1$) are the face (resp. degeneracy) operators in *X*.

Idea of proof, cont.

Since *i*^{*} Tr₂X ∈ [∆^{op}_{mono}, Cat], *i*^{*} Tr₂X is a semi-category object internal to Cat,

$$X_1 imes_{X_0^d} X_0 \longrightarrow X_1 \xrightarrow[\gamma \partial_1]{\gamma \partial_1} X_0^d$$

which also restricts to a semi-category structure internal to Cat

$$X_0 \times_{X_0^d} X_0 \longrightarrow X_0 \xrightarrow{\gamma} X_0^d$$
.

• γ as well as the following composition maps are equivalences of categories

$$X_0 imes_{X_0^d} X_0 o X_0, \qquad X_0 imes_{X_0^d} X_1 o X_1, \qquad X_1 imes_{X_0^d} X_0 o X_1$$

Simona Paoli (University of Aberdeen)

Overview

- - From Cat²_{wg} to Fair²
 - From Fair² to Cat²_{wg}
 - Sketch of proof of main result

3 + 4 = +

From Fair² to Cat²_{wg}

Proposition

There is a functor

$$T_2: \operatorname{Fair}^2 o \operatorname{SSegPs}[\Delta^{op}, \operatorname{Cat}]$$

such that, for each $X \in \text{Fair}^2$, $(T_2X)_0 = X_0$, $(T_2X)_1 = X_1$ and $(T_2X)_r = X_1 \times_{X_0} \stackrel{r}{\cdots} \times_{X_0} X_1$ for $r \ge 2$.

3

イロト 不得 トイヨト イヨト

The functor T₂

For each <u>k</u> ∈ <u>∆</u> and X ∈ Fair² there is an equivalence of categories

$$\alpha_{\underline{k}}: X_{\pi(\underline{k})} \leftrightarrows X_{\underline{k}}: \beta_{\underline{k}}$$

such that $\beta_{\underline{k}} \alpha_{\underline{k}} = \mathsf{Id}.$

• Let $\underline{f} : \underline{n} \to \underline{m}$ and $\underline{f}' : \underline{n}' \to \underline{m}'$ be maps in $\underline{\Delta}^{op}$ with $\pi \underline{f} = \pi \underline{f}'$. Then, if $X \in \text{Fair}^2$, $\beta_{\underline{m}} X(\underline{f}) \alpha_{\underline{n}} = \beta_{\underline{m}'} X(\underline{f}') \alpha_{\underline{n}'}$.

3

A THE A THE A

The functor T_2 , cont.

- Given $X \in \text{Fair}^2$ and $n \in \Delta^{op}$, let $(T_2X)_n = X_n$.
- Given $f : n \to m$ in Δ^{op} , choose $\underline{f} : \underline{n} \to \underline{m}$ in $\underline{\Delta}^{op}$ with $\pi \underline{f} = f$ and let $T_2 f$ be given by the composite

$$X_n \xrightarrow{\alpha_{\underline{n}}} X_{\underline{n}} \xrightarrow{\underline{f}} X_{\underline{m}} \xrightarrow{\beta_{\underline{m}}} X_m .$$

• From the previous slide, this is well defined.

3

イロト イポト イラト イラト

The functor T_2 , cont.

• Given $n \xrightarrow{f} m \xrightarrow{g} s$ in Δ^{op} , to define $T_2(gf)$ we need maps in $\underline{\Delta}^{op}$ $\underline{n} \xrightarrow{\underline{f}} \underline{m} \xrightarrow{\underline{g}} s, \pi(\underline{f}) = f, \pi(\underline{g}) = g,$ so that $T_2(gf)$ is the composite $X_n \xrightarrow{\alpha_n} X_n \xrightarrow{\underline{gf}} X_{\underline{s}} \xrightarrow{\beta_m} X_m.$

- The existence of the liftings \underline{f}, g of f and g is not obvious.
- Main issue: one can easily find maps

Simor

$$\underline{n} \xrightarrow{\underline{f}'} \underline{m} \qquad \underline{m}' \xrightarrow{\underline{g}'} \underline{s} \qquad \pi(\underline{f}') = f, \ \pi(g') = g$$

but why can we ensure that we can find maps such that $\underline{m} = \underline{m}'$?

a Paoli (University of Aberdeen)	November 2022	36/44

Lifting sequences of maps in delta

Proposition

Given maps in Δ

$$n_1 \xrightarrow{f_1} n_2 \xrightarrow{f_2} n_3 \rightarrow \cdots \xrightarrow{f_k} n_{k+1}$$

there are maps in $\underline{\Delta}$

$$\underline{n}_1 \xrightarrow{\underline{f}_1} \underline{n}_2 \xrightarrow{\underline{f}_2} \underline{n}_3 \to \cdots \xrightarrow{\underline{f}_k} \underline{n}_{k+1}$$

with $\pi \underline{f}_j = f_j$.

The proof is by induction on k and depends on properties of <u>Δ</u> in relation to Δ.

Simona Paoli (University of Aberdeen)	November 2022	37/44

From Fair² to Cat²_{wg}, cont.

Definition

Let R_2 : Fair² \rightarrow Cat²_{wg} be the composite

$$\mathsf{Fair}^2 \xrightarrow{T_2} \mathsf{SSegPs}[\Delta^{^{op}}, \mathsf{Cat}] \xrightarrow{St} \mathsf{Cat}^2_{\mathsf{wg}} ,$$

where *St* is the restriction to SSegPs[Δ^{op} , Cat] of the functor *St* : SegPs[Δ^{op} , Cat] \rightarrow Cat²_{wg}.

Comparison result

Theorem (P.)

The functors

$$F_2: \operatorname{Cat}^2_{\operatorname{wg}} \rightleftarrows \operatorname{Fair}^2: R_2$$

induce an equivalence of categories after localization with respect to the 2-equivalences

 ${\rm Cat_{wg}^2}/{\sim}\simeq~{\rm Fair^2}/{\sim}$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Given $X \in Cat^2_{wg}$, we produce a 2-equivalence in Cat^2_{wg} between X and R_2F_2X .
- Given Y ∈ Fair², we produce a zig-zag of 2-equivalences in Fair² between Y and F₂R₂Y.
- The construction of these maps requires a new player, the category Fair²_{wg} of weakly globular fair 2-categories.

Proof of main result: comparing X and R_2F_2X

- Recall R_2 : Fair² $\xrightarrow{T_2}$ SSegPs[Δ^{op} , Cat] \xrightarrow{St} Cat²_{wg} and F_2 : Cat²_{wg} \rightarrow Fair².
- Given X ∈ Cat²_{wg} there is a levelwise equivalence pseudo-natural transformation in T₂F₂X → X in Ps[Δ^{op}, Cat].
- By adjunction, this corresponds to a levelwise equivalence natural transformation in [Δ^φ, Cat]

$$R_2F_2X = St T_2F_2X \to X$$
.

• In particular, this is a 2-equivalence in Fair² between X and R_2F_2X . Hence $X \cong R_2F_2X$ in $\operatorname{Cat}^2_{wq}/\sim$.

Simona Paoli	(Universit	y of Aberdeen)
--------------	------------	----------------

Proof of main result: comparing Y and R_2F_2Y

- Given Y ∈ Fair², there is a levelwise equivalence pseudo-natural transformation F₂R₂Y → Y in Ps[Δ^{op}, Cat].
- By adjunction, this gives a natural transformation in [<u>△</u>^{op}, Cat] St F₂R₂Y → Y.
- Since $F_2St T_2Y \in \text{Fair}^2$ then $F_2R_2Y \in \text{SegPs}[\Delta^{op}, \text{Cat}]$ so $St F_2R_2Y \in \text{Fair}^2_{wg}$.
- So we have a zig-zag of 2-equivalences in Fair²_{wg}

$$F_2R_2Y \leftarrow St F_2R_2Y \rightarrow Y$$

Comparing Y and R_2F_2Y , cont.

- There is a functor D: Fair²_{wg} \rightarrow Fair² which preseves 2-equivalences and is identity on Fair².
- From the zig-zag of 2-equivalences in Fair²_{wg}

$$F_2R_2Y \leftarrow St F_2R_2Y \rightarrow Y$$

we obtain the zig-zag of 2-equivalences in Fair²

 $F_2R_2Y = DF_2R_2Y \leftarrow DSt F_2R_2Y \rightarrow DY = Y$.

• It follows that $Y \cong R_2 F_2 Y$ in Fair²/ \sim .

Simona Paoli	(University	of Aberdeen)
--------------	-------------	--------------

Summary

- Several models of weak 2-categories, in particular the Segal-type models and fair 2-categories.
- Direct comparison between weakly globular double categories and fair 2-categories.
- New light on weakly globular double categories, as encoding weak units.
- Lifting of strings of maps from Δ to $\underline{\Delta}$; category Fair²_{wq}.

• Potential for higher dimensional generalisations.

Simona Paoli	(University	of Aberdeen)
--------------	-------------	--------------

< D > < A.