Double categories and weak units

Simona Paoli¹

¹Department of Mathematics University of Aberdeen (UK)

Virtual double categories workshop

Simona Paoli (University of Aberdeen) November 2022 1/44

 Ω

and in

- The classical notion of bicategory captures a 2-dimensional structure with weakly associative and weakly unital composition laws. This requires explicit description of the coherence axioms.
- In the modelling approach to weak 2-categories, a combinatorial machinery is set up so that compositions are weakly associative and weakly unital but the coherence axioms do not have to be stated explicitly.

 Ω

 (5.7) (5.7)

- Several models of weak 2-categories exits and have been shown to be equivalent to bicategories. They also have higher dimensional generalizations.
- Weakly globular double categories Cat $_{\text{wg}}^2$, introduced by P. and Pronk, is a model based on a full subcategory of strict double categories.
- Fair 2-categories Fair², introduced by J.Kock, model weak 2-categories with strict associativity and weak unit laws.

Motivating question

- We aim to directly compare Fair² and Cat $_{\text{wg}}^2$, without using the equivalences of Fair² and Cat $_{\text{wg}}^2$ with bicategories.
- This will highlight interesting features of weakly globular double categories and pave the way to higher dimensional generalizations (weak units conjecture).

Overview

- Plan: Background: the key players, Cat $^2_{\mathsf{wg}},$ Fair², SegPs[∆ $^{\mathsf{op}},$ Cat]
	- From Cat $_{\rm wg}^2$ to Fair²
	- From Fair² to Cat $_{\rm wg}^2$
	- Sketch of proof of main result

 Ω

あきする ト

Segal maps

Let $X \in [\Delta^{op}, \mathcal{C}]$ be a simplicial object in a category $\mathcal C$ with pullbacks. Denote $X[k] = X_k$.

For each $k\geq2$, let $\nu_i:X_k\rightarrow X_1,$ $\nu_j=X(r_j),$ $r_j(0)=j-1,$ $r_j(1)=j$

There is a unique map, called Segal map

$$
\eta_k:X_k\to X_1\times_{X_0}\stackrel{k}{\cdots}\times_{X_0}X_1\ .
$$

G.

 Ω

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Segal maps and internal categories

• There is a nerve functor

$$
N: Cat \mathcal{C} \rightarrow [\Delta^{op}, \mathcal{C}]
$$

X ∈ Cat \mathcal{C}

$$
NX \cdots X_1 \times_{X_0} X_1 \times_{X_0} X_1 \longrightarrow X_1 \times_{X_0} X_1 \longrightarrow X_1 \longrightarrow X_1 \longrightarrow X_0
$$

Fact: $X \in [\Delta^{\circ p}, C]$ is the nerve of an internal category in C if and only if all the Segal maps $\eta_k: X_k \to X_1 \times_{X_0} \stackrel{k}{\cdots} \times_{X_0} X_1$ are isomorphisms.

Weakly globular double categories

- $\mathcal{X} \in [\Delta^{^{op}}, \mathsf{Cat}]$ is in $\mathsf{Cat}^2_{\mathsf{wg}}$ if
	- i) The Segal maps are isomorphisms:

$$
X_k \cong X_1 \times_{X_0} \cdots \times_{X_0} X_1 \qquad k \geq 2
$$

- ii) Weak globularity condition: X_0 is an equivalence relation; thus $\gamma: X_0 \rightarrow X_0^d$ is an equivalence of categories, where X_0^d is the discrete category on the set of connected components of *X*0.
- iii) The induced Segal maps are equivalences of categories:

$$
X_k \cong X_1 \times_{X_0} \cdots \times_{X_0} X_1 \stackrel{\simeq}{\longrightarrow} X_1 \times_{X_0^d} \cdots \times_{X_0^d} X_1 \qquad k \geq 2
$$

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

Weak globularity condition

- The set underlying X^d_0 plays the role of set of objects.
- The induced Segal map condition is equivalent to

 Ω

4 17 18

Truncation functor and hom category

- Let $p:$ Cat \rightarrow Set be the isomorphism classes of objects functor.
- **•** There is a truncation functor

$$
\rho^{(1)}:\mathsf{Cat}_{\mathsf{wg}}^2\to\mathsf{Cat}\,,
$$

$$
(p^{(1)}X)_k = pX_k \text{ for all } k \geq 0.
$$

Given $X \in \mathsf{Cat}^2_{\mathsf{wg}}, \, a, b \in X_0^d$ let $X(a,b)$ be the fibre at (a,b) of

$$
X_1 \xrightarrow{(\partial_0,\partial_1)} X_0 \times X_0 \xrightarrow{(\gamma,\gamma)} X_0^d \times X_0^d.
$$

a miller

 Ω

2-Equivalences in Cat² wg

Definition

A morphism $\mathit{F}:X\rightarrow Y$ in Cat $^2_{\mathsf{wg}}$ is a 2-equivalence if

(i) For all $a, b \in X_0^d$ $F(a, b)$: $X(a, b)$ → $Y(Fa, Fb)$ is an equivalence of categories.

(ii) $p^{(1)}$ *F* is an equivalence of categories.

в

 Ω

イロト イ押 トイラ トイラトー

- A coloured category is a category $\mathcal C$ with a subcategory $\mathcal W$ containing all objects. The arrows of W are called coloured arrows.
- Morphisms of colored categories are colour-preserving functors.
- A coloured graph is a graph in which some of the edges have been singled out as colours.
- To form the free coloured category on a coloured graph take the free category on the whole graph an let W be the free category on the coloured part of the graph.

 Ω

A BA A BA L

4 ロ ト ィ *同* ト

Coloured ordinals

- A (finite) coloured ordinal is a free coloured category on a (finite) linearly ordered coloured graph.
- \bullet Let $\mathbb T$ be the category of finite non-empty coloured ordinals

Morphisms are as usual ordinals for the dots but a link can be set but may not be broken.

• Functor $\pi : \mathbb{T} \to \Delta$ contracting all the links.

Semi-categories

- Let ∆*mono* be obtained from ∆ by removing the degeneracy maps.
- If $X \in [\Delta_{mono}^{\scriptscriptstyle \mathcal{O}}, \mathsf{Set}]$ satisfies the Segal condition

$$
X_k \cong X_1 \times_{X_0} \cdots \times_{X_0} X_1 \qquad k \geq 2
$$

then *X* is a semi-category.

• A coloured semi-category is a semi-category with a sub-semi-category comprising all objets. A morphism between coloured semi-categories is a colour preserving semi-functor.

イロト イ押ト イヨト イヨト

The fat delta

Definition (J. Kock)

The fat delta Δ is the category of all finite non-empty coloured semi-ordinals.

- One can naturally identify ∆ = T*mono*.
- The functor $\pi : \mathbb{T} \to \Delta$ gives rise to a functor

$$
\pi:\underline{\Delta}=\mathbb{T}_{\textit{mono}}\rightarrow \Delta_{\textit{mono}}\hookrightarrow \Delta\;.
$$

в

 Ω

イロト イ押ト イヨト イヨトー

The fat delta, cont.

• There is a 'horizontal inclusion' Δ_{mono} $\rightarrow \Delta$ interpreting a semi-ordinal as a coloured semi-ordinal with nothing coloured

$$
\raisebox{12pt}{$\scriptscriptstyle\bullet$} \longrightarrow \hspace{10pt} \raisebox{12pt}{$\scriptscriptstyle\bullet$} \longrightarrow \hspace{10pt} \raisebox{12pt}{$\scriptscriptstyle\bullet$} \longrightarrow \hspace{10pt} \raisebox{12pt}{$\scriptscriptstyle\bullet$} \longrightarrow \hspace{10pt} \raisebox{12pt}{$\scriptscriptstyle\bullet$} \longrightarrow \cdots
$$

• There is a 'vertical inclusion' Δ_{mono} \rightarrow Δ interpreting a semi-ordinal as coloured semi-ordinal with everything coloured

$$
\scriptstyle\bullet \longrightarrow \mathbf{1}\longrightarrow \overrightarrow{\mathbf{1}\longrightarrow \cdots}
$$

∽≏∩

4 0 5

Let Cat be the coloured category with coloured arrows the equivalences of categories.

Definition (J. Kock)

A fair 2-category is a colour-preserving functor *X* : ∆*op* → Cat preserving discrete objects and pullbacks over discrete objects.

o Denote

$$
\mathcal{O} = X_{\bullet}, \qquad \mathcal{A} = X_{\bullet}, \qquad \mathcal{U} = X_{\bullet}
$$

and think of these as objects, arrows, weak identity arrows.

 Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

Remarks

Let *m* + *n* be the pushout in ∆*op* of *m* ← • → *n*. Then we have a • pullback

Hence, the restriction to either copy of $\Delta^{op}_{mono} \subset \underline{\Delta}^{op}$ is a Δ^{op}_{mono} -diagram satisfying the Segal condition: ${\cal A}$ and ${\cal U}$ are semi-categories.

• It can be shown that the two maps $\mathcal{U} \rightrightarrows \mathcal{O}$ coincide.

 Ω

A BAKEN B

∢ □ ▶ ィ [□] ▶

To give a fair 2-category *X* it is enough to give the following data:

a) A discrete category of objects $\mathcal{O} = X_{\bullet}$, a category of arrows $A = X_2$ and a category of weak units $U = X_2$ together with a commuting diagram

 Ω

Fair 2-categories, cont.

b) Semi-category structures on $\mathcal{U} \longrightarrow \mathcal{O}$ and $\mathcal{A} \longrightarrow \mathcal{O}$ such that

is a semi-functor.

c) The maps $\mathcal{U}{\Longrightarrow}\mathcal{O}$ as well as the composition maps

$$
u \times_{\mathcal{O}} A \to A \leftarrow A \times_{\mathcal{O}} U, \qquad u \times_{\mathcal{O}} U \to U
$$

which are images of

4 0 8

are equivalences of categories.

 Ω

2-Equivalences in Fair²

• There is a truncation functor

$$
\textit{p}^{(1)}:\textsf{Fair}^2\rightarrow \textsf{Cat}
$$

given by $(\rho^{(1)}X)_n = \rho(X_n)$ for all $n \in \Delta_{mono}^{op}.$

• Given *a*, *b* ∈ *X*₀ let *X*(*a*, *b*) be the fiber at (*a*, *b*) of the map $X_1 \xrightarrow{(\partial_0,\partial_1)} X_0 \times X_0.$

Definition

A morphism $f: X \rightarrow Y$ in Fair² is a <mark>2-equivalence</mark> if

- (i) For all *a*, *b* ∈ *X*0, *f*(*a*,*b*) : *X*(*a*, *b*) → *Y*(*fa*, *fb*) is an equivalence of categories.
- (ii) $p^{(1)}f$ is an equivalence of categories.

G. Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

Segal-type models

Definition

The category Ta $_{\mathsf{wg}}^2$ of weakly globular Tamsamani 2-categories is the full subcategory of [∆*op* , Cat] whose objects *X* are such that

 $i)$ $X₀$ is an equivalence relation.

ii) The induced Segal maps $\hat{\mu}_k : X_k \to X_1 \times_{X_0^0} I_k$ $\stackrel{k}{\cdots}\times_{X_0^d} X_1$ are equivalences of categories for all *k* ≥ 2.

∽≏∩

∢ □ ▶ ィ [□] ▶

Segal maps for pseudo-functors

Let $H\in \mathsf{Ps}[\Delta^{op},\mathsf{Cat}]$ be such that H_0 is discrete. The following diagram in Cat commutes

Definition

The category SegPs[∆^{*ºº*}, Cat] is the full subcategory of Ps[∆^{*op*}, Cat] whose objects *H* are such that

- i) H_0 is discrete.
- ii) All Segal maps are isomorphisms for all $k > 2$

$$
H_k \cong H_1 \times_{H_0} \cdots \times_{H_0} H_1.
$$

 \equiv

 Ω

イロト イ押 トイラ トイラトー

The functor Tr_2

Theorem

There is a functor

$$
\text{Tr}_2: \text{Ta}_{\text{wg}}^2 \to \text{SegPs}[\Delta^\varphi, \text{Cat}]
$$
\n
$$
(\text{Tr}_2 X)_k = \begin{cases} X_0^d, & k = 0 \\ X_1, & k = 1 \\ X_1 \times_{X_0^d} \dots \times_{X_0^d} X_1, & k > 1 \end{cases}.
$$

Further, the strictification functor St : Ps $[\Delta^{\circ p}$, Cat] $\rightarrow [\Delta^{\circ p}$, Cat] *restricts to a functor*

$$
\mathcal{S}t\,:\text{SegPs}[\Delta^\text{op},\text{Cat}]\to\text{Cat}^2_{\text{wg}}\,.
$$

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Strong Segalic pseudo-functors

The inclusion functor *i* : ∆*op mono* → ∆*op* induces a functor *i*[∗] : Ps[∆^{\circ}^{*°*}, Cat] → Ps[∆ \circ ^{\circ}_{*mono*}, Cat].

Definition

A Segalic pseudo-functor $X\in\mathsf{SegPs}[\Delta^{^{op}},\mathsf{Cat}]$ is called strong if *i*X* ∈ [∆ $_{mono}^{\varphi}$,Cat]. A morphism of strong Segalic pseudo-functors is a pseudo-natural transformation *F* in SegPs[∆[∞], Cat] such that *i*F* is a natural transformation in [∆*op mono*, Cat].

We denote by SSegPs[∆^{ºº}, Cat] the category of strong Segalic pseudo-functors, so that

$$
i^*:\text{SSegPs}[\Delta^\text{op},\text{Cat}]\to[\Delta^\text{op}_\text{mono},\text{Cat}]\ .
$$

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Cat² wg and strong Segalic pseudo-functors

Proposition

Simona Paoli (University of

The restriction to $\mathsf{Cat}^2_{\mathsf{wg}} \subset \mathsf{Ta}^2_{\mathsf{wg}}$ of the functor $\mathcal{T}r_2$: Ta $^2_{\mathsf{wg}} \to \mathsf{SegPs}[\Delta^{\sigma_p},\mathsf{Cat}]$ *is a functor*

 $\mathit{Tr}_2: \mathsf{Cat}^2_{\mathsf{wg}} \to \mathsf{SSegPs}[\Delta^{op},\mathsf{Cat}].$

To show that i^* $\mathit{Tr}_2X \in [\Delta^{\mathit{op}}_{mono}, \mathsf{Cat}]$ we show that

$$
\partial'_i = \textit{Tr}_2 \partial_i : (\textit{Tr}_2 X)_n \rightarrow (\textit{Tr}_2 X)_{n-1}
$$

satisfy the semi-simplicial identities $\partial'_i \partial'_j = \partial'_{j-1} \partial'_i, \ \ i < j.$

KON KON KENYEN E YOOR

Idea of proof

• The induced Segal maps $(k \geq 2)$

$$
\hat{\mu}_k:X_k=X_1\times_{X_0}\cdots\times_{X_0}X_1\to X_1\times_{X_0^d}\cdots\times_{X_0^d}X_1=(\text{Tr}_2X)_k
$$

is injective on objects, thus $\nu_k \hat{\mu}_k = Id$, where ν_k is the pseudo-inverse.

Thus for instance for *k* > 2

$$
\begin{aligned} &\left(\mathcal{T}\!r_2\boldsymbol{X}\right)_{k+1} \xrightarrow{\partial'_j} \left(\mathcal{T}\!r_2\boldsymbol{X}\right)_{k} \xrightarrow{\partial'_i} \left(\mathcal{T}\!r_2\boldsymbol{X}\right)_{k-1} \\ &\partial'_i \partial'_j = \hat{\mu}_{k-1} \partial_i \nu_k \hat{\mu}_k \partial_j \nu_{k+1} = \hat{\mu}_{k-1} \partial_i \partial_j \nu_{k+1} = \\ &= \hat{\mu}_{k-1} \partial_{j-1} \partial_i \nu_{k+1} = \hat{\mu}_{k-1} \partial_{j-1} \nu_k \hat{\mu}_k \partial_i \nu_{k+1} = \partial'_{j-1} \partial'_i \ . \end{aligned}
$$

 \equiv

 Ω

イロト イ押 トイラ トイラトー

From Cat² wg to Fair²

Theorem *There is a functor* F_2 : $\mathsf{Cat}^2_{\mathsf{wg}} \to \mathsf{Fair}^2$ \mathcal{S} *such that* $(F_2 X)_0 = X_0^d$, $p^{(1)} X = p^{(1)} F_2 X$ and, for each a, $b \in X_0^d$, $X(a, b) \cong F_2X(a, b)$. *F*² *preserves* 2*-equivalences.*

 Ω

KID KARA KE KA E KILE

Idea of proof

Given $X \in \mathsf{Cat}^2_{\mathsf{wg}}$ define

$$
(F_2X)_\bullet = X_0^d
$$
, $(F_1X)_\bullet = X_1$, $(F_2X)_\bullet = X_0$

with the commuting diagram

where ∂_0 , ∂_1 : $X_1 \rightarrow X_0$ (resp. σ_0 : $X_0 \rightarrow X_1$) are the face (resp. degeneracy) operators in *X*.

4 D.K.

 Ω

Idea of proof, cont.

Since *i* Tr* $_2$ *X* \in [$\Delta^\mathcal{P}_{mono},$ Cat], *i* Tr* $_2$ *X* is a semi-category object internal to Cat ,

$$
X_1 \times_{X_0^d} X_0 \longrightarrow X_1 \xrightarrow{\gamma \partial_0} X_0^d.
$$

which also restricts to a semi-category structure internal to Cat

$$
X_0 \times_{X_0^d} X_0 \longrightarrow X_0 \longrightarrow \frac{\gamma}{\gamma} X_0^d.
$$

 \bullet γ as well as the following composition maps are equivalences of categories

$$
X_0 \times_{X_0^d} X_0 \to X_0, \qquad X_0 \times_{X_0^d} X_1 \to X_1, \qquad X_1 \times_{X_0^d} X_0 \to X_1
$$

Simona Paoli (University of Aberdeen) November 2022 31/44

Overview

- Plan: Background: the key players, Cat $^2_{\mathsf{wg}},$ Fair², SegPs[∆ $^{\mathsf{op}},$ Cat]
	- From Cat $_{\rm wg}^2$ to Fair²
	- From Fair² to Cat $_{\rm wg}^2$
	- Sketch of proof of main result

 299

重き イラメー

4. 何

From Fair² to Cat² wg

Proposition

There is a functor

 \mathcal{T}_2 : Fair² → SSegPs $[\Delta^{^{op}}, \mathsf{Cat}]$ $\mathsf{such\ that,\ for\ each\ }X\in\mathsf{Fair}^2,\ (\mathcal{T}_2X)_0=X_0,\ (\mathcal{T}_2X)_1=X_1\ \ \hbox{\rm and}\$ $(T_2 X)_r = X_1 \times_{X_0} \cdots \times_{X_0} X_1$ for $r \ge 2$ *.*

 \equiv

 Ω

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A}$

The functor *T***²**

For each $\underline{k}\in \underline{\Delta}$ and $X\in$ Fair 2 there is an equivalence of categories

$$
\alpha_{\underline{k}}: X_{\pi(\underline{k})} \leftrightarrows X_{\underline{k}}: \beta_{\underline{k}}
$$

such that $\beta_k \alpha_k = \text{Id}$.

Let $\underline{f} : \underline{n} \to \underline{m}$ and $\underline{f}' : \underline{n}' \to \underline{m}'$ be maps in $\underline{\Delta}^{op}$ with $\pi \underline{f} = \pi \underline{f}'.$ Then, if $X \in \text{Fair}^2$, $\beta_{\underline{m}} X(\underline{f}) \alpha_{\underline{n}} = \beta_{\underline{m'}} X(\underline{f'}) \alpha_{\underline{n'}}$.

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

The functor T_2 , cont.

- \bullet Given *X* ∈ Fair² and *n* ∈ Δ^{op} , let $(T_2X)_n = X_n$.
- **•** Given *f* : *n* → *m* in Δ^{op} , choose *<u>f</u>* : *<u>n</u>* → *m* in Δ^{op} with $\pi f = f$ and let T_2f be given by the composite

$$
X_n \xrightarrow{\alpha_n} X_{\underline{n}} \xrightarrow{f} X_{\underline{m}} \xrightarrow{\beta_m} X_m .
$$

• From the previous slide, this is well defined.

в

 Ω

イロト イ押ト イヨト イヨト

The functor *T***2, cont.**

Given $n\stackrel{f}{\to}m\stackrel{g}{\to}s$ in $\Delta^{op},$ to define $\mathcal{T}_{2}(gf)$ we need maps in $\underline{\Delta}^{op}$ $\underline{\begin{matrix} n\end{matrix}}\xrightarrow{f}\underline{\begin{matrix} m\end{matrix}}\xrightarrow{g}s,\pi(\underline{f})=f,\pi(g)=g,$ so that $\mathcal{T}_2(gf)$ is the composite $X_n \stackrel{\alpha_n}{\longrightarrow} X_{\underline{n}} \stackrel{gf}{\longrightarrow} X_{\underline{s}} \stackrel{\beta_m}{\longrightarrow} X_m.$

- The existence of the liftings *f*, *g* of *f* and *g* is not obvious.
- Main issue: one can easily find maps

$$
\underline{n} \xrightarrow{f'} \underline{m} \qquad \underline{m'} \xrightarrow{g'} \underline{s} \qquad \pi(\underline{f'}) = f, \ \pi(g') = g
$$

but why can we ensure that we can find maps such that $m = m$?

KOLLER LEXIEN E VOOR

Lifting sequences of maps in delta

Proposition

Given maps in ∆

$$
n_1 \stackrel{f_1}{\rightarrow} n_2 \stackrel{f_2}{\rightarrow} n_3 \rightarrow \cdots \stackrel{f_k}{\rightarrow} n_{k+1}
$$

there are maps in ∆

$$
\underline{n}_1 \xrightarrow{f_1} \underline{n}_2 \xrightarrow{f_2} \underline{n}_3 \rightarrow \cdots \xrightarrow{f_k} \underline{n}_{k+1}
$$

with $\pi f_j = f_j$.

The proof is by induction on *k* and depends on properties of ∆ in relation to ∆.

イロメ イ押 トイモ トイモ トーモ

 Ω

From Fair² to Cat² wg, cont.

Definition Let R_2 : Fair $^2 \rightarrow \mathsf{Cat}^2_{\mathsf{wg}}$ be the composite ${\sf Fair}^2 \stackrel{I_2}{\longrightarrow} {\sf SSegPs}[\Delta^{op},{\sf Cat}] \stackrel{St}{\longrightarrow} {\sf Cat}^2_{\sf wg} \;,$ where *St* is the restriction to SSegPs[∆*op* , Cat] of the functor $\mathcal{S}t$: SegPs $[\Delta^{\mathcal{P} \mathcal{P}}, \mathsf{Cat}] \rightarrow \mathsf{Cat}_{\mathsf{wg}}^2.$

 \equiv

 Ω

Comparison result

Theorem (P.)

The functors

$$
F_2: \mathsf{Cat}^2_{wg} \rightleftarrows \mathsf{Fair}^2: R_2
$$

induce an equivalence of categories after localization with respect to the 2*-equivalences*

 $\mathsf{Cat}_{\mathsf{wg}}^2/{\sim} \simeq \mathsf{Fair}^2/{\sim}$.

 \equiv

 Ω

イロトメ 御 トメ 君 トメ 君 トー

Method of proof

- Given $X\in\mathsf{Cat}^2_{\mathsf{wg}},$ we produce a 2-equivalence in $\mathsf{Cat}^2_{\mathsf{wg}}$ between X and R_2F_2X .
- Given $Y \in \mathsf{Fair}^2,$ we produce a zig-zag of 2-equivalences in Fair² between *Y* and F_2R_2Y .
- The construction of these maps requires a new player, the category Fair $_{\rm wg}^2$ of weakly globular fair 2-categories.

∽≏∩

Proof of main result: comparing *X* **and** *R***2***F***2***X*

- Recall R_2 : Fair² $\stackrel{I_2}{\longrightarrow}$ SSegPs[∆^{op}, Cat] $\stackrel{St}{\longrightarrow}$ Cat $^2_{\mathsf{wg}}$ and $\mathsf{F}_2:\mathsf{Cat}^2_{\mathsf{wg}}\to \mathsf{Fair}^2.$
- Given $X \in \mathsf{Cat}^2_{\mathsf{wg}}$ there is a levelwise equivalence pseudo-natural transformation in $T_2F_2X \to X$ in Ps[$\Delta^{\mathcal{P}},$ Cat].
- By adjunction, this corresponds to a levelwise equivalence natural transformation in [∆[∽], Cat]

$$
R_2F_2X=St\,T_2F_2X\to X.
$$

In particular, this is a 2-equivalence in Fair² between *X* and R_2F_2X . Hence $X \cong R_2F_2X$ in Cat $\frac{2}{w}$ /∼.

Proof of main result: comparing *Y* **and** *R***2***F***2***Y*

- Given $Y \in \mathsf{Fair}^2,$ there is a levelwise equivalence pseudo-natural transformation $F_2P_2Y\to Y$ in $\mathsf{Ps}[\underline{\Delta}^{op},\mathsf{Cat}]$.
- By adjunction, this gives a natural transformation in [∆^{op}, Cat] $St F₂B₂Y \rightarrow Y$.
- Since *F*2*St T*2*Y* ∈ Fair² then *F*2*R*2*Y* ∈ SegPs[∆*op* , Cat] so $St F₂R₂Y \in Fair^2_{wg}.$
- So we have a zig-zag of 2-equivalences in Fair $_{\rm wg}^2$

$$
F_2R_2Y \leftarrow St\, F_2R_2Y \rightarrow Y
$$

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Comparing *Y* **and** *R***2***F***2***Y***, cont.**

- There is a functor D : Fair $^2_{\mathsf{wg}}$ \rightarrow Fair 2 which preseves 2-equivalences and is identity on Fair².
- From the zig-zag of 2-equivalences in Fair $_{\mathsf{wg}}^2$

 $F_2R_2Y \leftarrow$ *St* $F_2R_2Y \rightarrow Y$

we obtain the zig-zag of 2-equivalences in Fair²

 $F_2R_2Y = DF_2R_2Y \leftarrow DStF_2R_2Y \rightarrow DY = Y$.

BARBA B November 2022 43/44

 Ω

 \bullet It follows that *Y* ≅ *R*₂*F*₂*Y* in Fair²/∼.

Summary

- Several models of weak 2-categories, in particular the Segal-type models and fair 2-categories.
- Direct comparison between weakly globular double categories and fair 2-categories.
- o New light on weakly globular double categories, as encoding weak units.
- Lifting of strings of maps from Δ to $\underline{\Delta}$; category Fair $^2_{\mathsf{wg}}$.

• Potential for higher dimensional generalisations.

