Formalising size in formal category theory

Seerp Roald Koudenburg

Middle East Technical University - Northern Cyprus Campus

Virtual Double Categories Workshop 29 November 2022

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Plan

- 1. Motivation: unifying the notions of subobject classifier and Yoneda embedding
- 2. Augmented virtual double categories
- 3. (Co-)cartesian cells
- 4. Formal Yoneda embeddings
- 5. Some formal results involving a formal notion of size

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Power sets

The power set *PA* of a set *A* classifies relations $J \subseteq A \times B$:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Uniqueness of J^{λ} ? How to fill the triangle with a cell?

Power sets

The power set *PA* of a set *A* classifies relations $J \subseteq A \times B$:

$$\begin{array}{ccc} A \xrightarrow{\forall J} & B \\ y \searrow \downarrow \chi_{x' \exists J^{\lambda}} \\ PA \end{array} & y(a) = \{a\} \\ J^{\lambda}(b) = \{a \in A \mid aJb\} \end{array}$$

Regarding $PA = (PA, \subseteq)$ as a partial order the cell χ is the equality of relations

$$aJb \iff \{a\} \subseteq J^{\lambda}(b) \iff (y a) \subseteq (J^{\lambda}b)$$

 χ is *cartesian*: it exhibits J as the restriction of \subseteq along y and J^{λ} . Notes

- In topos theory the above (roughly) generalises as the notion of *power object*.
- Taking A = 1 gives the subobject classifier $t: 1 \rightarrow P1 =: \Omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Power sets versus Yoneda embeddings

The category $\text{Set}^{A^{\text{op}}}$ of presheaves on a locally small category *A* classifies profunctors $J: A^{\text{op}} \times B \rightarrow \text{Set}$:

 χ exhibits J as the "restriction of Set^{A^{op}} along y and J^{λ} ":

$$J(a,b)\cong \mathsf{Set}^{\mathcal{A}^\mathsf{op}}\Bigl(\mathcal{A}(-,a),J(-,b)\Bigr)=\mathsf{Set}^{\mathcal{A}^\mathsf{op}}(\mathsf{y}\,a,J^\lambda b)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unifying the notions of power object and Yoneda embedding

Aim: A formal notion that unifies the notions of power object and Yoneda embedding.

Requirements on the setting

- "double dimensional" $(J: A \rightarrow B \text{ and } f: A \rightarrow C)$
- ► for Yoneda embeddings: Set^{Aop} is likely to be locally large
 - \Rightarrow Set-profunctors might not compose
 - \Rightarrow Set^{A^{op}} might not have a unit (hom) Set-profunctor

Natural setting is that of augmented virtual double categories.

Virtual double categories

Definition (Burroni)

A virtual double category ${\mathcal K}$ has

- objects A, B, ...
- vertical morphisms $f: A \rightarrow C, \ldots$
- horizontal morphisms $J: A \rightarrow B, \ldots$
- unary cells

- vertical composition of morphisms g ∘ f and cells ψ ∘ (φ₁,...,φ_n)
- vertical identity morphisms id_A and cells id_J

Augmented virtual double categories

Definition

An augmented virtual double category ${\mathcal K}$ has

- objects, vertical morphisms and horizontal morphisms
- unary cells

nullary cells

vertical composition and vertical identities

Examples

Prof of Set-profunctors between locally large categories

- SProf of small profunctors J: A → B between locally small categories (each J(-, b) is a small presheaf, i.e. a small colimit of representable presheaves)
- ▶ ModRel of *modular* relations $J: A \rightarrow B$ between partial orders $(a_1 \le a_2, a_2Jb_1, b_1 \le b_2 \Rightarrow a_1Jb_2)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples (cont'd)

- ModRel(E) of internal modular relations in a finitely complete category E
- dFib(C) of internal discrete two-sided fibrations in a finitely complete 2-category C
- $(\mathcal{V}, \mathcal{V}')$ -Prof of \mathcal{V} -profunctors between \mathcal{V}' -categories $(\mathcal{V} \subseteq \mathcal{V}' \text{ a universe enlargement})$
- MonProf of lax monoidal Set-profunctors between locally large monoidal categories

Restrictions

Restrictions of horizontal morphisms are defined by cartesian cells: ψ below with $|\underline{J}| \leq 1$ is cartesian if

If $|\underline{J}| = 1$ then $\underline{K}(f,g) := J$ is the restriction of \underline{K} along f and g. Examples in Prof:

•
$$K(f,g) \coloneqq [A^{\operatorname{op}} \times B \xrightarrow{f^{\operatorname{op}} \times g} C^{\operatorname{op}} \times D \xrightarrow{K} \operatorname{Set}]$$

- ► $C(f,g) := [A^{op} \times B \xrightarrow{f^{op} \times g} C^{op} \times C \xrightarrow{hom_C} Set]$ (only exists if all C(fa, gb) are small)
- ► $f_* := C(f, id)$ (exists if f is *locally small*: all $C(f_a, c)$ are small)

Restrictions

Restrictions of horizontal morphisms are defined by cartesian cells: ψ below with $|\underline{J}| \leq 1$ is cartesian if

If $|\underline{J}| = 1$ then $\underline{K}(f,g) := J$ is the restriction of \underline{K} along f and g. In general:

- $f: A \rightarrow C$ is fully faithful if id_f is cartesian
- f is admissible if $f_* := C(f, id)$ exists (companion of f)
- A is admissible if $I_A := A(id, id)$ exists (horizontal unit)

Cocartesian cells

(Mostly) vertically dual: ϕ below is *weakly unary-cocartesian* if

If $h = id_{X_0}$ and $k = id_{X_n}$ then ϕ defines $J := H_1 \odot \cdots \odot H_n$ as the weak unary-composite of (H_1, \ldots, H_n) .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Formal Yoneda morphisms

A Yoneda morphism is a "dense" morphism $y: A \rightarrow \widehat{A}$ that satisfies the Yoneda axiom:

$$\forall J \colon A \to B \qquad \exists \qquad \begin{array}{c} A \xrightarrow{J} B \\ y \searrow \operatorname{cart}_{J^{\lambda}} \\ \widehat{A} \end{array}$$

This recovers (up to equivalence):

- ModRel: power sets ($\widehat{A} \cong PA$)
- ModRel(E): power objects in E (ModRel(E) has Yoneda morphisms ⇐⇒ E is a topos)
- ▶ Prof: classical Yoneda embeddings y: $A \rightarrow Set^{A^{op}}$
- ▶ MonProf: "Day-convolution" on Set^{Aop}

Yoneda structures versus the present Yoneda morphisms

Yoneda structure on a 2-category C (Street and Walters)

 right ideal *I* of admissible morphisms

$$A \xrightarrow{\forall f \in \mathcal{I}} C$$

$$y \bigvee_{\substack{\text{left} \\ \text{lift.} \\ \varphi'}} \stackrel{'}{\exists} C(f,1)$$

besides being *I* an ideal, notion of admissibility is "isolated"

Example: 2-toposes

Weber shows that a "2-topos" structure on C induces a Yoneda structure on C. The latter's formal Yoneda embeddings in fact satisfy our notion in dFib(C).

Yoneda morphisms in an augmented virtual double category

- ► all J: A → B are admissible f is admissible \iff f_{*} exists $A \xrightarrow{\forall J} B$ • $y \bigvee_{cart} (J_J^{\lambda})$ \widehat{A}^{*}
- notion of admissibility related to that of fully faithfulness, adjunction and restriction

Given a locally small category A denote by $(Set^{A^{op}})_s$ the locally small category of small presheaves on A. In "Limits of small functors" by Day and Lack:

Proposition

Given a functor $f: A \to C$ consider $f^{\sharp}: (\operatorname{Set}^{A^{\operatorname{op}}})_{s} \to (\operatorname{Set}^{C^{\operatorname{op}}})_{s}$ given by left Kan extension along $f. f^{\sharp}$ admits a right adjoint if and only if the Set-profunctor $f_{*}: A \to C$ is a small.

Right adjoint to left Kan extension

Proposition

Given a functor $f: A \to C$ consider $f^{\sharp}: (Set^{A^{op}})_s \to (Set^{C^{op}})_s$ given by left Kan extension along $f. f^{\sharp}$ admits a right adjoint if and only if the Set-profunctor $f_*: A \to C$ is a small.

Formalisation

Consider the "pointwise left Kan cell" on the right. Among the following (b) \Rightarrow (a) holds. Under mild conditions (a) \Leftrightarrow (b) \Leftarrow (c). Under stronger conditions (e.g. in sProf) all are equivalent.

(a) f[#] admits a right adjoint
(b) y_C ∘ f is admissible
(c) f is admissible

The definition of Yoneda morphism $y: A \to \widehat{A}$ does *not* imply that y is fully faithful!

Lemma

A is admissible if and only if both the restriction $\widehat{A}(y, y)$ exists and y is fully faithful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cocompleteness of presheaf objects

In "Yoneda structures from 2-toposes" by Weber:

Theorem (for Yoneda structures)

If C is "small" and \widehat{C} is cocomplete then y: $C \to \widehat{C}$ defines \widehat{C} as the free cocompletion of C.

We can do better. Using "On the size of categories" by Street and Freyd, for any locally small category B we have:

B is essentially small \iff Set^{B^{op}} is locally small $\iff \forall A \xrightarrow{H} B \xrightarrow{J} E$ the weak unary-composite $H \odot J$ exists in Prof

Definition

- ► Call an object *B* weakly small if the weak unary-composite $H \odot J$ exists for all $A \stackrel{H}{\leftrightarrow} B \stackrel{J}{\rightarrow} E$.
- ► Call an object *M* weakly cocomplete if the "weak left Kan extensions" of all pairs $M \stackrel{d}{\leftarrow} B \stackrel{J}{\rightarrow} E$, with *B* weakly small, exist.

Cocompleteness of presheaf objects

Theorem (for Yoneda structures)

If C is "small" and \widehat{C} is cocomplete then y: $C \to \widehat{C}$ defines \widehat{C} as the free cocompletion of C.

- ► Call an object *B* weakly small if the weak unary-composite $H \odot J$ exists for all $A \stackrel{H}{\leftrightarrow} B \stackrel{J}{\rightarrow} E$.
- Call an object *M* weakly cocomplete if the "weak left Kan extension" of all pairs *M* ← ^{*d*} ^{*J*} → *E*, with *B* weakly small, exists.

Theorem (for augmented virtual double categories) Let y: $A \rightarrow \hat{A}$ be such that the restrictions $\hat{A}(y, f)$ exist for all $f: X \rightarrow \hat{A}$. The following are equivalent for objects B and E:

the weak left Kan extensions of all pairs ← B → E exist
 the weak unary-composite H ⊙ J exists for all A → B → E
 In particular is weakly cocomplete.

Thanks!