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Introductory comments/notation:

• Funny arrows m : A −7−→ B I call “proarrows.”

• Display cells horizontally.

• External composition and identity are m ⊗ n and yA.

• Proarrows and cells have external sources and targets; cells

have internal proarrow domains and codomains.

• External composition is diagrammatic.

• Monoidal structure on a bicategory is � : B×B→ B.

Talk plan: try to give an answer to the question: which double

categories are of the form Rel(E ) for a regular category E .
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A relation in a category is a monomorphism R → A× B.

E = regular category

1. C  Rel(E ) ordinary category/locally discrete 2-category

2. C  Rel(E ) a bicategory

3. C  Rel(E ) a double category.
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Bicategorical axiomatization of relations [CW87].

• A cartesian bicategory is a bicategory B equipped with a
tensor pseudo-functor � : B×B→ B and identity I where

• every object is equipped with a commutative comonoid

structure;

• every morphism is a lax comonoid homomorphism;

• comultiplication and counit have right adjoints;

• uniqueness condition.

• A bicategory of relations is a cartesian bicategory where

every object is discrete. Every functionally complete

bicategory of relations is equivalent to one Rel(C ).

• Our question: which double categories D are equivalent to

those of the form Rel(C )?
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• A double category D is an equipment [Shu08] if every f has a

companion and a conjoint: proarrows f! and f ∗ and cells

·
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��

y� // ·
f
��

·
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��

f!� // ·
1
��

·
⇓f

��

y� // ·
1
��

·
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��

f ∗� // ·
f
��

·
f!

� // · · y
� // · ·

f ∗
� // · · y

� // ·

satisfying some equations [GP04].

• In any equipment D can form so-called “restrictions” and

“extensions” of proarrows along ordinary arrows. In relations,

restriction = pullback, extension = image.

• [Ale18] A double category D is cartesian if ∆: D→ D× D
and D→ 1 have right adjoints in Dbl. Each category D(A,B)

has products, written ‘∧’.
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Definition (Cf. [Sch15])
The kernel of a morphism f : A→ B is the restriction ρ of the

unit on B along f . Dually, the cokernel of f is the extension cell ξ

A

ρf
��

f!⊗f ∗� // A

f
��

A

ξf
��

yA� // A

f
��

B yB

� // B B
f ∗⊗f!

� // B

A morphism e : A→ E in an equipment is a cover if the canonical

globular cell is an iso e∗ ⊗ e! ∼= yE . Dually, a morphims m : E → B

is an inclusion if the canonical globular cell is an iso m!⊗m∗ ∼= yE .
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Let’s look more closely at relations on a regular category E .

• The double category Rel(E ) is a cartesian equipment.

• Rel(E ) is “unit-pure” i.e. y : D0 → D1 is fully faithful.

• Rel(E ) has tabulators. Tabulators are basic for bicategories of

relations.

• Goal: characterize cartesian equipments of the form Rel(E ) in

terms of extra conditions on tabulators.
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Definition
A bicategory of relations is a locally posetal cartesian bicategory

where every object is discrete: for each object X , the

comultiplication ∆: X → X � X satsifies the Frobenius identity:

∆∆∗ = (∆∗ � 1)(1�∆).

Discrete in what way? In bicategory of semilattices [JT84] discrete

objects are precisely the discrete spaces [CW87, Remark 2.9(iv)]
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Definition
A bicategory of relations is functionally complete if every arrow

X → I has a tabulation: an arrow TX → X satisfying equations.

Theorem (Theorem 3.5 [CW87])
Given a functionally complete bicategory of relations B, the

category of maps1in B is regular and B is equivalent to relations

on the category of maps.

So, refine our question again. If there is a concept of double

category of relations, which double categories of relations are

actually of the form Rel(E ) for some regular category E ?

1An map is a morphism having a right adjoint in the bicategory.
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Here’s the key observation:

Lemma (Proposition 3.1 [Lam22b])
The horizontal bicategory of any locally posetal cartesian

equipment is a cartesian bicategory.

Definition
A locally posetal cartesian equipment D is a ‘double category of

relations’ if the discreteness axiom

∆⊗∆∗ = (∆∗ × 1)⊗ (1×∆).

holds in the horizontal bicategory of D.

So, which double categories of relations are of the form Rel(E ) for

E regular?
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For inspiration, review the case of spans.

Theorem (§5 of [Nie12])
Let D denote a double category with pullbacks. The following are

equivalent:

1. The identity functor 1: D0 → D0 extends to an oplax/lax

adjunction2F : Span(D0)� D : G.

2. D is an equipment with tabulators.

F takes the proarrow cokernel of a span; and G takes the legs of

the tabulator of a proarrow.

1An oplax/lax adjunction is a conjoint pair in the strict double category of

double categories with oplax and lax functors. Basically it’s an adjunction

between double categories where F is oplax and G is lax.
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The oplax/lax adjunction is a strong (both functors are pseudo!)

equivalence under some further conditions:

Theorem (§5 of [Ale18])
For a double category D the following are equivalent:

1. D is equivalent to Span(C ) for finitely-complete C .

2. D is a unit-pure cartesian equipment admitting certain

Eilenberg-Moore objects.

3. D0 has pullbacks satisfying a Beck-Chevalley condition and

the canonical functor Span(D0)→ D is an equivalence of

double categories.

The precise statement of these conditions isn’t really important for

now; they are completeness conditions.
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Our goal however was to characterize in terms of tabulators.

What are they?

Definition
A double category D has tabulators if y : D0 → D1 has a right

adjoint > : D1 → D0 in Dbl. The tabulator of m : A −7−→ B is the

object >m together with a counit cell >m⇒ m.

Tabulators in Rel(E ) satisfy:

1. 〈l , r〉 : >m→ A× B is monic;

2. and m = l∗ ⊗ r! holds (tabulators are strong).

Profunctors: the tabulator of a profunctor is basically the category

of elements construction! These are strong but not monic.
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• If a bicategory of relations is functionally complete (every
arrow X → I has a tabulation), then ordinary arrows
m : X → Y have tabulations too. These satisfy

• lr◦ = m (strong condition)

• uniqueness condition ≈ jointly monic

• More explicitly: an allegory3is tabular if every arrow R has a
tabulator: a pair of arrows f and g such that

1. gf ◦ = R “tabulators are strong”

2. f ◦f ∧ g◦g = 1 “tabulators are monic.”

1Allegories are another approach to formalizing a calculus of relations [FS90].

In particular they have local products ∧ and a duality involution (−)◦ behaving

somewhat like the conjoint (−)∗.
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Definition
A cartesian equipment is functionally complete if it has

tabulators and they are strong and monic in the sense that

1. m ∼= l∗ ⊗ r!

2. l! ⊗ l∗ ∧ r! ⊗ r∗ ∼= y

both hold for any proarrow m : A −7−→ B and its tabulator

〈l , r〉 : Tm→ A× B.
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At least the ”monic” hypothesis gives us the following:

Theorem (Theorem 6.5 [Lam22b])
For a double category D with D0 regular, the identity functor

D0 → D0 extends to a normalized oplax/lax adjunction

F : Rel(D0)� D : G if, and only if,

1. D is a unit-pure equipment;

2. has monic tabulators;

3. the unit cell ye is an extension for each cover e.

Strictly speaking, the cartesian hypothesis isn’t needed here.
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When is G pseudo?

• “Relations tabulate” = every relation in D tabulates its

cokernel.

• If relations tabulate, G is pseudo.

• Relations tabulate implies that D is unit-pure.

• This is a strong assumption we’ll discuss more shortly.

Certainly it’s true of actual relations.
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Theorem (Theorem 7.5 [Lam22b])
The identity functor 1: D0 → D0 extends to an adjoint equivalence

of pseudo-functors

F : Rel(D0)� D : G

if, and only if,

1. D is a functionally complete;

2. relations tabulate;

3. ye is an extension cell for each cover e.

NB: Roughly, “strong” assumption in “functionally complete”

implies a Beck-Chevalley condition which implies that normal oplax

F is pseudo.
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Wrap up conditions 1. and 2. in a single one: existence of a

subobject comprehension scheme

Functionally complete implies at least that

> : D(A,B)→ SubD0(A× B)

is well defined.

Lemma
The morphism > as above is an equivalence if, and only if,

relations tabulate.

Definition
D admits a subobject comprehension scheme if > as above is a

well-defined (strong) equivalence of categories.
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Some consequences and reflections:

• If D admits a subobject comprehension scheme:

1. D is functionally complete;

2. relations tabulate;

3. D is unit-pure;

• Why is this reasonable?

1. Subobject classifier in a topos induces a bijection

E (X ,Ω) ∼= Sub(X );

2. Elements construction for set-valued functors has a genuine

pseudo-inverse (fibers construction).

3. Size issues are subtle!
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Theorem (Theorem 8.3 [Lam22b])
For a double category D with D0 regular, the identity functor

D0 → D0 extends to an adjoint equivalence of pseudo-functors

F : Rel(D0)� D : G if, and only if,

1. D admits a subobject comprehension scheme;

2. ye is an extension cell for each cover e.
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So, when is D0 regular? Are these conditions sufficient?

Lemma (Theorem 9.4 [Lam22b])
If D is a ‘double category of relations’ with a subobject

comprehension scheme, then D0 is regular.

Discreteness enters here non-trivially in the form of the modular

law; also to show that equipment covers are precisely covers in D0.

Putting everything together:

Theorem (Theorem 10.2 [Lam22b])
If D is a ‘double category of relations’ with a subobject

comprehenseion scheme, then the identity functor on D0 extends

to a strong adjoint equivalence of double categories Rel(D0) ' D.
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Question: why?

• ‘bicategories of relations’ used for knowledge representation

(KR) in [Pat17]. This is a bicategorical approach to the

functional OLOGs of [KS12].

• improvement, but if bicategories ≈ categorified

logics/theories, they don’t quite have a type theory, so

equational reasoning about terms is hard but not impossible

• enter double categories: these supply the missing type theories

enabling a cleaner approach to equational reasoning,

computer implementation and data migration

• for more: [Lam22a] also some slides at

https://michaeljlambert.github.io/main.pdf
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Adjoints for double categories.
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