Double Categories of Relations

Virtual Double Categories Workshop

Michael Lambert

2 December 2022

UMass-Boston

Introductory comments/notation:

- Funny arrows $m: A \rightarrow B$ I call "proarrows."
- Display cells horizontally.
- External composition and identity are $m \otimes n$ and y_A .
- Proarrows and cells have external sources and targets; cells have internal proarrow domains and codomains.
- External composition is diagrammatic.
- Monoidal structure on a bicategory is $\boxtimes : \mathfrak{B} \times \mathfrak{B} \to \mathfrak{B}$.

Talk plan: try to give an answer to the question: which double categories are of the form $\mathbb{R}el(\mathscr{E})$ for a regular category \mathscr{E} .

A **relation** in a category is a monomorphism $R \to A \times B$.

 $\mathscr{E} = \text{regular category}$

- 1. $\mathscr{C} \rightsquigarrow \mathsf{Rel}(\mathscr{E})$ ordinary category/locally discrete 2-category
- 2. $\mathscr{C} \rightsquigarrow \mathfrak{Rel}(\mathscr{E})$ a bicategory
- 3. $\mathscr{C} \leadsto \mathbb{R}el(\mathscr{E})$ a double category.

Bicategorical axiomatization of relations [CW87].

- A cartesian bicategory is a bicategory
 [®] equipped with a tensor pseudo-functor
 [®]:
 [®] ×
 [®] →
 [®] and identity *I* where
 - every object is equipped with a commutative comonoid structure;
 - every morphism is a lax comonoid homomorphism;
 - comultiplication and counit have right adjoints;
 - uniqueness condition.
- A bicategory of relations is a cartesian bicategory where every object is discrete. Every functionally complete bicategory of relations is equivalent to one Rel(C).
- Our question: which double categories

 □ are equivalent to those of the form Rel(%)?

satisfying some equations [GP04].

- In any equipment $\mathbb D$ can form so-called "restrictions" and "extensions" of proarrows along ordinary arrows. In relations, restriction = pullback, extension = image.
- [Ale18] A double category D is cartesian if Δ: D → D × D and D → 1 have right adjoints in Dbl. Each category D(A, B) has products, written '∧'.

Definition (Cf. [Sch15])

The **kernel** of a morphism $f: A \to B$ is the restriction ρ of the unit on B along f. Dually, the **cokernel** of f is the extension cell ξ

A morphism $e: A \to E$ in an equipment is a **cover** if the canonical globular cell is an iso $e^* \otimes e_! \cong y_E$. Dually, a morphims $m: E \to B$ is an **inclusion** if the canonical globular cell is an iso $m_! \otimes m^* \cong y_E$.

Let's look more closely at relations on a regular category \mathscr{E} .

- The double category $\mathbb{R}el(\mathscr{E})$ is a cartesian equipment.
- \mathbb{R} el(\mathscr{E}) is "unit-pure" i.e. $y : \mathbb{D}_0 \to \mathbb{D}_1$ is fully faithful.
- Rel(E) has tabulators. Tabulators are basic for bicategories of relations.
- Goal: characterize cartesian equipments of the form $\mathbb{R}el(\mathscr{E})$ in terms of extra conditions on tabulators.

Definition

A **bicategory of relations** is a locally posetal cartesian bicategory where every object is *discrete*: for each object X, the comultiplication $\Delta \colon X \to X \boxtimes X$ satsifies the *Frobenius identity*:

$$\Delta\Delta^*=(\Delta^*\boxtimes 1)(1\boxtimes \Delta).$$

Discrete in what way? In bicategory of semilattices [JT84] discrete objects are precisely the discrete spaces [CW87, Remark 2.9(iv)]

Definition

A bicategory of relations is **functionally complete** if every arrow $X \to I$ has a *tabulation*: an arrow $TX \to X$ satisfying equations.

Theorem (Theorem 3.5 [CW87])

Given a functionally complete bicategory of relations \mathfrak{B} , the category of maps in \mathfrak{B} is regular and \mathfrak{B} is equivalent to relations on the category of maps.

So, refine our question again. If there is a concept of *double* category of relations, which double categories of relations are actually of the form $\mathbb{R}el(\mathscr{E})$ for some regular category \mathscr{E} ?

¹An **map** is a morphism having a right adjoint in the bicategory.

Here's the key observation:

Lemma (Proposition 3.1 [Lam22b])

The horizontal bicategory of any locally posetal cartesian equipment is a cartesian bicategory.

Definition

A locally posetal cartesian equipment $\mathbb D$ is a 'double category of relations' if the discreteness axiom

$$\Delta \otimes \Delta^* = (\Delta^* \times 1) \otimes (1 \times \Delta).$$

holds in the horizontal bicategory of \mathbb{D} .

So, which double categories of relations are of the form $\mathbb{R}el(\mathscr{E})$ for \mathscr{E} regular?

For inspiration, review the case of spans.

Theorem (§5 of [Nie12])

Let $\mathbb D$ denote a double category with pullbacks. The following are equivalent:

- 1. The identity functor 1: $\mathbb{D}_0 \to \mathbb{D}_0$ extends to an oplax/lax adjunction²F: $\mathbb{S}pan(\mathbb{D}_0) \rightleftarrows \mathbb{D}$: G.
- 2. \mathbb{D} is an equipment with tabulators.

F takes the proarrow cokernel of a span; and G takes the legs of the tabulator of a proarrow.

 $^{^{1}}$ An **oplax/lax adjunction** is a conjoint pair in the strict double category of double categories with oplax and lax functors. Basically it's an adjunction between double categories where F is oplax and G is lax.

The oplax/lax adjunction is a strong (both functors are pseudo!) equivalence under some further conditions:

Theorem (§5 of [Ale18])

For a double category \mathbb{D} the following are equivalent:

- 1. \mathbb{D} is equivalent to $\mathbb{S}pan(\mathscr{C})$ for finitely-complete \mathscr{C} .
- 2. D is a unit-pure cartesian equipment admitting certain Eilenberg-Moore objects.
- 3. \mathbb{D}_0 has pullbacks satisfying a Beck-Chevalley condition and the canonical functor $\mathbb{S}pan(\mathbb{D}_0) \to \mathbb{D}$ is an equivalence of double categories.

The precise statement of these conditions isn't really important for now; they are completeness conditions. Our goal however was to characterize in terms of tabulators.

What are they?

Definition

A double category $\mathbb D$ has **tabulators** if $y: \mathbb D_0 \to \mathbb D_1$ has a right adjoint $\top : \mathbb D_1 \to \mathbb D_0$ in Dbl. The **tabulator** of $m: A \to B$ is the object $\top m$ together with a counit cell $\top m \Rightarrow m$.

Tabulators in $\mathbb{R}el(\mathscr{E})$ satisfy:

- 1. $\langle I, r \rangle : \top m \to A \times B$ is monic;
- 2. and $m = l^* \otimes r_1$ holds (tabulators are strong).

Profunctors: the tabulator of a profunctor is basically the category of elements construction! These are strong but not monic.

- If a bicategory of relations is functionally complete (every arrow X → I has a tabulation), then ordinary arrows m: X → Y have tabulations too. These satisfy
 - $lr^{\circ} = m$ (strong condition)
 - ullet uniqueness condition pprox jointly monic
- More explicitly: an allegory³ is tabular if every arrow R has a tabulator: a pair of arrows f and g such that
 - 1. $gf^{\circ} = R$ "tabulators are strong"
 - 2. $f^{\circ}f \wedge g^{\circ}g = 1$ "tabulators are monic."

¹Allegories are another approach to formalizing a calculus of relations [FS90]. In particular they have local products \wedge and a duality involution $(-)^{\circ}$ behaving somewhat like the conjoint $(-)^{*}$.

Definition

A cartesian equipment is **functionally complete** if it has tabulators and they are strong and monic in the sense that

- 1. $m \cong I^* \otimes r_!$
- 2. $l_! \otimes l^* \wedge r_! \otimes r^* \cong y$

both hold for any proarrow $m \colon A \to B$ and its tabulator $\langle I, r \rangle \colon Tm \to A \times B$.

At least the "monic" hypothesis gives us the following:

Theorem (Theorem 6.5 [Lam22b]) For a double category $\mathbb D$ with $\mathbb D_0$ regular, the identity functor $\mathbb{D}_0 \to \mathbb{D}_0$ extends to a normalized oplax/lax adjunction $F: \mathbb{R}el(\mathbb{D}_0) \rightleftarrows \mathbb{D}: G \text{ if, and only if,}$

- 1. \mathbb{D} is a unit-pure equipment;
- 2. has monic tabulators:
- 3. the unit cell y_e is an extension for each cover e.

Strictly speaking, the cartesian hypothesis isn't needed here.

When is *G* pseudo?

- "Relations tabulate" = every relation in $\mathbb D$ tabulates its cokernel.
- If relations tabulate, *G* is pseudo.
- Relations tabulate implies that \mathbb{D} is unit-pure.
- This is a strong assumption we'll discuss more shortly.
 Certainly it's true of actual relations.

Theorem (Theorem 7.5 [Lam22b])

The identity functor $1: \mathbb{D}_0 \to \mathbb{D}_0$ extends to an adjoint equivalence of pseudo-functors

$$F \colon \mathbb{R}\mathrm{el}(\mathbb{D}_0)
ightleftharpoons G$$

if, and only if,

- 1. \mathbb{D} is a functionally complete;
- 2. relations tabulate;
- 3. y_e is an extension cell for each cover e.

NB: Roughly, "strong" assumption in "functionally complete" implies a Beck-Chevalley condition which implies that normal oplax F is pseudo.

Wrap up conditions 1. and 2. in a single one: existence of a *subobject comprehension scheme*

Functionally complete implies at least that

$$\top \colon \mathbb{D}(A,B) \to \mathrm{Sub}_{\mathbb{D}_0}(A \times B)$$

is well defined.

Lemma

The morphism \top as above is an equivalence if, and only if, relations tabulate.

Definition

 $\mathbb D$ admits a **subobject comprehension scheme** if \top as above is a well-defined (strong) equivalence of categories.

Some consequences and reflections:

- If $\mathbb D$ admits a subobject comprehension scheme:
 - 1. \mathbb{D} is functionally complete;
 - 2. relations tabulate;
 - 3. \mathbb{D} is unit-pure;
- Why is this reasonable?
 - 1. Subobject classifier in a topos induces a bijection $\mathscr{E}(X,\Omega) \cong \mathrm{Sub}(X)$;
 - 2. Elements construction for set-valued functors has a genuine pseudo-inverse (fibers construction).
 - 3. Size issues are subtle!

Theorem (Theorem 8.3 [Lam22b]) For a double category $\mathbb D$ with $\mathbb D_0$ regular, the identity functor $\mathbb{D}_0 \to \mathbb{D}_0$ extends to an adjoint equivalence of pseudo-functors $F: \mathbb{R}el(\mathbb{D}_0) \rightleftarrows \mathbb{D}: G \text{ if, and only if,}$

- 1. D admits a subobject comprehension scheme;
- 2. y_e is an extension cell for each cover e.

So, when is \mathbb{D}_0 regular? Are these conditions sufficient?

Lemma (Theorem 9.4 [Lam22b]) If $\mathbb D$ is a 'double category of relations' with a subobject comprehension scheme, then \mathbb{D}_0 is regular.

Discreteness enters here non-trivially in the form of the modular law; also to show that equipment covers are precisely covers in \mathbb{D}_0 .

Putting everything together:

Theorem (Theorem 10.2 [Lam22b]) If \mathbb{D} is a 'double category of relations' with a subobject comprehenseion scheme, then the identity functor on \mathbb{D}_0 extends to a strong adjoint equivalence of double categories $\mathbb{R}el(\mathbb{D}_0) \simeq \mathbb{D}$.

Question: why?

- 'bicategories of relations' used for knowledge representation (KR) in [Pat17]. This is a bicategorical approach to the functional OLOGs of [KS12].
- improvement, but if bicategories ≈ categorified logics/theories, they don't quite have a type theory, so equational reasoning about terms is hard but not impossible
- enter double categories: these supply the missing type theories enabling a cleaner approach to equational reasoning, computer implementation and data migration
- for more: [Lam22a] also some slides at https://michaeljlambert.github.io/main.pdf

Cartesian Double Categories with an Emphasis on Characterizing Spans.

arXiv e-prints, page arXiv:1809.06940, September 2018.

Cartesian bicategories I.

Journal of Pure and Applied Algebra, 49:11-32, 1987.

Peter J. Freyd and Andre Scedrov.

Categories, Allegories.

North Holland, 1990.

Marco Grandis and Robert Paré.

Adjoints for double categories.

Cahiers de Topologie et Géom. Diff. Catégoriques, 45:193–240, 2004.

An extension of the galois theory of grothendieck.

Memoirs of the American Mathematical Society, 51(309), 1984.

Robert E. Kent and David I. Spivak.

Ologs: A categorical framework for knowledge representation.

PLoS ONE, 7(1), 2012.

Michael Lambert.

Data operations are functorial semantics.

Topos Institute Blog, 2022.

https://topos.site/blog/2022/09/data-operations-are-functorial-semantics/.

Michael Lambert.

Double categories of relations.

Theory and Applications of Categories, 38(33):249–1283, 2022.

Span, cospan, and other double categories.

Theory and Applications of Categories, 26(26):729-742, 2012.

Evan Patterson.

Knowledge Representation in Bicategories of Relations. arXiv e-prints, page arXiv:1706.00526, June 2017.

Patrick Schultz.

Regular and exact (virtual) double categories. arXiv e-prints, page arXiv:1505.00712, May 2015.

Michael Shulman.

Framed bicategories and monoidal fibrations.

Theory and Applications of Categories, 20:650–738, 2008.