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A model trained by gradient-descent

(Fong, D. Spivak, and Tuyéras 2019; Cruttwell, Gavranović, Ghani, Wilson, and Zanasi 2021; Capucci

2022)



A strategic game

(Ghani, Hedges, Winschel, and Zahn 2018; Capucci, Gavranović, Hedges, and Rischel 2021; Capucci

2022)



But...

What does it mean to ‘study cybernetic systems’?

Ontology

What ‘is’ a cybernetic system?

What is it made of?

How does it interact with other

cybernetic systems?

What is its interface? How do we describe it?

Phenomenology

What does a cybernetic system ‘do’?

What can it be observed about it?

How do observations of different parts relate to

observations on the whole?

When are two cybernetic systems

observationally interchangeable?
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Categorical Systems Theory

A principled mathematical framework for the

ontology and phenomenology of systems is given by

categorical systems theory (CST)

Myers 2021

http://davidjaz.com/Papers/DynamicalBook.pdf


Categorical Systems Theory

CST is a principled and widely applicable paradigm for organizing a ‘theory’ of systems/processes.

It encompasses any example I found in the literature so far:

1. Algebras for operads of string diagrams (D. I. Spivak 2013; Vagner, D. I. Spivak, and Lerman

2014; Libkind, Baas, Patterson, and Fairbanks 2021; Shapiro and D. I. Spivak 2022)

2. Bicategories of transition systems (Katis, Sabadini, and Walters 1997a; Katis, Sabadini, and

Walters 1997b; Katis, Sabadini, and Walters 2002; Gianola, Kasangian, and Sabadini 2017;

Di Lavore, Gianola, Román, Sabadini, and Sobociński 2021)

3. Double categories of structured cospans (Fiadeiro and Schmitt 2007; Fong 2015; Baez and

Courser 2020; Baez, Courser, and Vasilakopoulou 2022; Baez and Master 2020)

4. Symmetric monoidal categories (Abramsky and Coecke 2004; Coecke and Paquette 2010;

Coecke and Kissinger 2018)
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In fact, CST is inspired by characteristics shared across them all:

1. Processes compose like morphisms of a category

2. Behaviours are relations/spans/matrices, and are (lax) functorially determined:

From (D. I. Spivak 2015)



Categorical Systems Theory

However, CST adds two important principles:

1. Processes organize in double categories.

This explains why behaviours land in Set-Mat/Span(Set): behaviours are often horizontal

corepresentables!

2. There is a distinction between processes and systems.

Processes mediate interaction between systems, by acting on their interfaces:

Sys : P> unitary lax
−−−−−! Cat



Categorical Systems Theory

However, CST adds two important principles:

1. Processes organize in double categories.

· ·

· ·

process process

map of interfaces

map of interfaces

map of processes

This explains why behaviours land in Set-Mat/Span(Set): behaviours are often horizontal

corepresentables!

2. There is a distinction between processes and systems.

Processes mediate interaction between systems, by acting on their interfaces:

Sys : P> unitary lax
−−−−−! Cat



Categorical Systems Theory

However, CST adds two important principles:

1. Processes organize in double categories.

This explains why behaviours land in Set-Mat/Span(Set): behaviours are often horizontal

corepresentables!

2. There is a distinction between processes and systems.

Processes mediate interaction between systems, by acting on their interfaces:

Sys : P> unitary lax
−−−−−! Cat



Categorical Systems Theory

However, CST adds two important principles:

1. Processes organize in double categories.

This explains why behaviours land in Set-Mat/Span(Set): behaviours are often horizontal

corepresentables!

2. There is a distinction between processes and systems.

Processes mediate interaction between systems, by acting on their interfaces:

Sys : P> unitary lax
−−−−−! Cat

Example

Dynamical systems (Rosen 1978) are endomorphisms T : S ! S on some objects of states, hopefully

equipped with an observable X : S ! O. The notion of process between these systems is functions

O ! O′ that remap observations. Very different!



Plan of the talk

The talk is divided in two parts:

1. An introduction to categorical systems theory:

1. Theories of processes and examples

2. Theories of systems and examples

3. Functorial behaviours and examples

2. A glimpse of categorical cybernetic systems theory,

and why we need the triple dimension
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Plan of the talk

The talk is divided in two parts:

1. An introduction to categorical systems theory:

1. Theories of processes and examples

2. Theories of systems and examples

3. Functorial behaviours and examples

All in double dimension

2. A glimpse of categorical cybernetic systems theory,

and why we need the triple dimension



Notation & conventions

1. Double categories are weak by default, (double) functors are lax by default

2. For the rest I mostly follow Grandis (2019)

3. ‘Loose’ arrows are vertical (denoted: −!• ), ‘tight’ arrows are horizontal (denoted: !)

· ·

· ·

••

4. Set denotes the double category of spans in Set,

5. Cat denotes the double category of categories, functors, profunctors and natural

transformations thereof.

I diverged from Myers (2021) on some notational and terminological choices.



Categorical systems theory



Motivation

Categorical systems theory is a conceptually simple, if mathematically sophisticated, framework:

1. It starts with recognizing processes organize in double categories:

P :=


· ·

· ·

process process

map of interfaces

map of interfaces

map of processes


2. Then processes are used to index systems, giving rise to doubly indexed categories of systems:

Sys : P> unitary lax
−−−−−! Cat

3. Finally, behaviour is studied by describing maps into the span-ish ‘observational theory’:

P> Set>

Cat Cat

Sys Obs

B>

B[
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Process theories

Definition

A process theory is a double category with attitude where:

1. objects are boundaries or interfaces,

2. vertical morphisms are processes,

3. horizontal morphisms are maps of boundaries,

4. squares are maps of processes

· ·

· ·

process process

map of interfaces

map of interfaces

map of processes

Adding structure to the double category refines the kind of processes we are talking about,

e.g.: concurrent process theories have a monoidal product with the attitude of spatial juxtaposition

of processes,
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Example: lenses

The process theory of lenses Lens is defined as follows:

1. boundaries are pairs of sets
(
A−

A+

)
,

2. processes are lenses: (
A−

A+

) p]

�
p

(
B−

B+

)
where

p : A+ ! B+, p] : A+ ×B− ! A−

3. maps of boundaries are charts: (
A−

A+

) h[

⇒
h

(
C−

C+

)
where

h : A+ ! C+, h[ : A+ ×A− ! C−
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Example: lenses

3. maps of processes are ‘commutative squares’:

(
A−

A+

) (
C−

C+

)
(
B−

B+

) (
D−

D+

)
h

p q

k

p] q]

h[

k[

meaning for every a+ ∈ A+ and b− ∈ B− we have

q(h(a+)) = k(p(a+)),

h[(a+, p](a+, b−)) = q](h(a+), k[(p(a+), b−)).



Example: observational theories

If C has pullbacks, Span(C) is the observational theory of C-processes where

1. boundaries are objects in C,

2. processes are spans in C,

3. maps of boundaries are maps in C,

4. maps of processes are squares in Span(C):

A C

S R

B D

p`

pr qr

q`

k

h

σ

This is an observational theory: processes are described by what we observe about their internal states.



Systems vs processes

We have setup a way to talk about processes and maps thereof, but in practice we often care about

specific processes, namely stateful/one-sided ones.

More generally, systems might be very different from the processes we use to plug them to!

Example

Among (non-deterministic) lenses, stateful ones are known as (non-deterministic) Moore machines:(
update
observe

)
:
(
S
S

)
�
(
I
O

)
This is an interactive finite state machine.

Example

Among all spans, we can consider ‘one-sided’ ones as state spaces exposing some observables:

observe : S ! O
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Systems theories

Crucially, systems are

1. Extendable by processes going out of their interfaces,

2. Comparable with other systems given a way to compare their interfaces and states

Definition

A systems theory over the process theory P is a doubly indexed category with attitude:

Sys : P> unitary lax
−−−−−! Cat∗

Again, one can consider more structure, e.g. concurrent systems theories, which are systems theories

over concurrent process theories (monoidal dbl cats) given by lax monoidal indexings.

*More precisely, this is a right module of P, considered as a (pseudo)monad in Span(Cat), since we

can’t really exchange loose and tight arrows (thanks to DJM for clarifying this).
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Systems theories

The attitude for a systems theory is as follows:

1. the categories Sys(A) for a given boundary A : P are categories of systems with boundary A

and simulations thereof,

2. processes p : A −!• B act functorially by extension:

Sys(p) : Sys(A) −! Sys(B)

3. maps of boundaries h : A! C act profunctorially (and laxly!):

Sys(h) : Sys(A) −!p Sys(C)

and we think of Sys(h)(S,R) as the possible simulations of S : Sys(A) in R : Sys(C) mediated

by the map h on their boundaries.
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Systems theories

4. maps of processes

A C

B D

p

•

q

•

k

h

σ

yield squares

Sys(A) Sys(B)

Sys(C) Sys(D)

Sys(p)

Sys(q)

Sys(k)pSys(h)p Sys(σ)

which extend a given simulation of systems along the given map of systems σ.



Example: observable dynamical systems

Traditionally, a dynamical system (DS) (Giunti and Mazzola 2012) is an endomorphism

update : S ! S

in some category of spaces S (e.g. Smooth, Meas, ...)

An observable dynamical system (ODS) (Rosen 1978) is a DS equipped with an observation:

S = (S : S, update : S ! S, observe : S ! O)

We can arrange ODS in a system theory, over a slightly trivial process theory, S!:

O O′

Q Q′

p q

h

k

Depending on the context, one might make vertical and horizontal maps different, e.g. vertical maps

might be effectful while horizontal ones aren’t.
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We can arrange ODS in a system theory, over a slightly trivial process theory, S!:

O O′

Q Q′

p q

h

k

Depending on the context, one might make vertical and horizontal maps different, e.g. vertical maps

might be effectful while horizontal ones aren’t.



Example: observable dynamical systems

Then

DynSys : S! unitary lax
−−−−−! Cat

DynSys(O) =



S R

S R

O O

observeS updateR

g

updateS updateR

g


Given a process p : O ! Q, we define

DynSys(p) : DynSys(O) −! DynSys(Q)

(S,updateS, observeS) 7−! (S,updateS, observeS # p)
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Example: observable dynamical systems

Given a map of boundaries h : O ! O′, we define a profunctor

DynSys(h) : DynSys(O)op ×DynSys(O′) −! Set

(S,R) 7−!


g : S ! R

∣∣∣∣∣∣∣∣∣∣∣∣∣

S R

S R

O O′
observeS updateR

g

h

updateS updateR

g





Example: observable dynamical systems

Finally, given a square
O O′

Q Q′

p q

h

k

we define a square

DynSys(O) DynSys(Q)

DynSys(O′) DynSys(Q′)

DynSys(h)p DynSys(k)p

DynSys(q)

DynSys(p)

DynSys(�)

‘sending g : S ! R to itself’, with the proof of commutativity got by stacking squares vertically:

S R

S R

O O′
observeS updateR

g

h

updateS updateR

g

7−!

S R

S R

O O′

Q Q′

observeS updateR

g

h

updateS updateR

g

k

p q



Example: Moore machines

Moore machines are (one possible notion of) system associated to the process theory Lens:

Moore : Lens> unitary lax
−−−−−! Cat

A Moore machine S : Moore
(
I
O

)
is an open dynamical systems:

updateS : S × I −! S, observeS : S −! O

It’s not just open towards the outside (observable), it’s also open from the outside.

Morphisms are maps that commute with the dynamics

Moore
(
I
O

)
=



(
S
S

) (
R
R

)
(
I
O

) (
I
O

)observeSupdateS observeRupdateR

g

π2#g


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Example: Moore machines

Given a lens
(
p]

p

)
:
(
I
O

)
⇒
(
I′

O′

)
we get a functor:

Sys
(
p]

p

)
: Sys

(
I
O

)
−! Sys

(
I′

O′

)
(
S
S

) (
S
S

)
(
I
O

)
(
I
O

) (
I′

O′

)

observeSupdateS

p p]

observeS

updateS



Example: Moore machines

Given a chart
(
h[

h

)
:
(
I
O

)
⇒
(
J
Q

)
we get a profunctor:

Moore
(
I
O

)op

×Moore
(
J
Q

)
Set

Moore

(
h[

h

)

(
S
S

)

(
I
O

)observeSupdateS
,

(
R
R

)

(
J
Q

)observeRupdateR
7−!



(
S
S

) (
R
R

)

(
I
O

) (
J
Q

)observeSupdateS observeRupdateR

h

h[

g

π2#g





Example: Moore machines

Finally, given a square (
I
O

) (
J
Q

)
(
I′

O′

) (
J′

Q′

)
h

p q

k

p] q]

h[

k[

we get a square in Cat...

Moore
(
I
O

)
Moore

(
I′

O′

)

Moore
(
J
Q

)
Moore

(
J′

Q′

)Moore

(
h[

h

)p

Moore

(
p]

p

)

Moore

(
q]

q

)
Moore

(
k[

k

)pMoore(�)



Example: Moore machines

...given by stacking squares:

Moore
(
h[

h

)
(S,R) Moore

(
k[

k

)(
Moore

(
p]

p

)
(S), Moore

(
q]

q

)
(R)
)

(
S
S

) (
R
R

) (
S
S

) (
R
R

)
(
I
O

) (
J
Q

) (
I
O

) (
J
Q

)
(
I′

O′

) (
J′

Q′

)
h

p q

k

p] q]

h[

k[

h

h[

Moore(�)S,R



Example: observational theory

Any observational theory of processes Span(C) supports a theory of observational systems

ObsC : Span(C)>
unitary lax
−−−−−! Cat

ObsC(I) =


S R

I I

observeS observeR

h


In this theory, a system S over the interface I : C is simply a state space S : C together with an

observation observeS : S ! I.

One can see maps S ! I as spans S == S ! I, thereby fitting this example into a more general

pattern of ‘systems are processes with a special left boundary’



Example: observational theory

Given a span I
p` X

pr! I ′, we can reindex by pull-push (span composition):

Obs(I
p` X

pr! I ′) : Obs(I) −! Obs(I ′)

S p∗`S

X

I I ′

observeS

pr

p∗` observeS



Example: observational theory

Given a map I
h
! J , we define a profunctor:

ObsC(I)op ObsC(J) Set

S R 
S ! R

observeS # # observeR

I
h
! J


I J

× ObsC(h)

observeS observeR



Example: observational theory

Finally, we have a map on squares that sends

I J

X Y

I ′ J ′

h

k

p`

pr

q`

qr

σ 7−!

ObsC(I) ObsC(J)

ObsC(I ′) ObsC(J ′)

ObsC(h)p ObsC(k)p

ObsC(p)

ObsC(q)

ObsC(σ)

again by stacking:
ObsC(h)(S,R) ObsC(k)(ObsC(f)(S),ObsC(g)(R))

S R S R

I J I J

X Y

I ′ J ′

ObsC(σ)S,R

observeS observeR

h h

k

σ



Example: observational theory

Thus we have a systems theory:

ObsC : Span(C)>
unitary lax
−−−−−! Cat

In particular, we have

ObsSet : Set> unitary lax
−−−−−! Cat

which on objects is defined as I 7! Set/I ∼= SetI .

When we write Obs, this is what we mean.



Morphisms of system theories

In category theory, we are interested in the way things map into each other...

Definition

A morphism of system theories Φ : Sys! Sys′ is a vertical lax natural transformation:

P> P′>

Cat Cat

Φ>

Sys′Sys
Φ[

Categorical system theory studies system theories

Sys : P> unitary lax
−−−−−! Cat

through behaviours:

B : Sys −! Obs
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Definition
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through behaviours:
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Corepresentable behaviours

Construction

Given Sys : P> ! Cat, and a system S : Sys(I), there is a morphism:

P> Set>

Cat Cat

Ph(I,−)>

ObsSys
Sys(S,−)

where, for a given J : P,

Sys(S,−)J : Sys(J) −! SetPh(I,J)

is a functor equivalently given as

Sys(J) Ph(I, J) Set

(T, I
h
! J) Sys(h)(S,T)

×

This picks all simulations of S in T mediated by the boundary map h.

We call this corepresentable behaviours of type S.
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ObsSys
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where, for a given J : P,

Sys(S,−)J : Sys(J) −! SetPh(I,J)

is a functor equivalently given as

Sys(J) Ph(I, J) Set

(T, I
h
! J) Sys(h)(S,T)

×

This picks all simulations of S in T mediated by the boundary map h.

We call this corepresentable behaviours of type S.



Example: fixpoints behaviours

Let fix :
(

1
1

)
==

(
1
1

)
be the trivial Moore machine (only one states, no input output).

Then Moore(fix,−) is the behaviour of fixpoints: given another Moore machine T :
(
I
O

)
, and a

chart
(
i
o

)
:
(

1
1

)
⇒
(
I
O

)
, the set

Moore
(
i
o

)
(fix,T) =


t ∈ T

∣∣∣∣∣∣∣∣∣∣∣

(
1
1

) (
T
T

)
(

1
1

) (
I
O

)
s

p

o

p]

π2#s

i


= {t ∈ T | p(s) = o, p](t, i) = t}

is the set of fixpoints for input i (and giving output o).



Example: fixpoint behaviours

Hence: studying fixpoints of Moore machines amounts to studying

Moore(fix,−) : Moore −! Obs

In particular, we can automatically mint lots of compositional structure. For instance, we know for any

lens
(
f]

f

)
:
(
I
O

)
�
(
J
Q

)
there is a natural map

Moore
(
I
O

)
SetO×I

Moore
(
J
Q

)
SetQ×J

Moore(fix,−)I

Moore(fix,−)J

Moore

(
f]

f

)
f∗

Moore

(
fix,

(
f]

f

))

sending fixpoints of S : Moore
(
I
O

)
to fixpoints of its extension Moore

(
f]

f

)
(S).

And one can prove in this case the map is iso! This recovers (D. I. Spivak 2015), and generalizes

more (see (Myers 2021, Theorem 5.3.3.1)).



Recap: categorical systems theory

1. One starts by defining a process theory, i.e. a double category with attitude:

P :=


· ·

· ·

process process

map of interfaces

map of interfaces

map of processes


2. Then processes are used to index systems, giving rise to doubly indexed categories of systems:

Sys : P> unitary lax
−−−−−! Cat

3. Finally, behaviour is studied by describing maps into the ‘observational theory’:

P> Set>

Cat Cat

Sys Obs

B>

B[

We get many of these just a corepresentable ones, i.e. maps of type Sys(S,−).



Categorical cybernetics



Motivation

The systems of categorical system theory are varied and numerous, but they miss some interesting

examples. In my work I mostly care about games and learners:

These (and others) are what I call cybernetic systems.



Categorical cybernetics

The conceptual foundation of ‘categorical cybernetics’, as advocated in Capucci, Gavranović, Hedges,

and Rischel 2021 and in Smithe 2021 rests on two main pillars:

1. The fact cybernetic systems are mereologically peculiar in having a distinctive boundary between

‘controller’ and ‘controlled’ subsystems;

2. The fact cybernetic processes tend to organize in bicategorical structures, where the first

dimension ignores the mereological distinction between controller and controllee, and the second

dimension distinguishes the controller system—so that higher dimensions encode deeper control

hierarchies;
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The compositional structure of cybernetic processes

The basic component of a bicategory of cybernetic processes is a globular 2-cell:

I J

f

g

υ

The ‘cybernetic’ interpretation of such a globe is that I and J denote an interface, f and g are

controllable processes between the given interfaces, and υ ‘reduces’ the controllability of g to that of

f , being itself a dynamical process.



The compositional structure of cybernetic processes

Their composition algebra also checks out: vertical composition of globular cells models sequential

composition of controls, whereas horizontal composition models the ‘parallel’ composition of controls

arising from the sequential composition of the processes they control.

• •

f

g

h

υ

ν

(a)

• • •

f

g

h

k

υ ν

(b)

Figure: (a) sequential composition of controls, (b) parallel composition of controls.



The compositional structure of cybernetic processes

With little effort, we can concert controllable and simple processes in the same structure. We claim the

structure of controllable processes is that a of a company a double category where every tight arrow

has a companion.

• • • •

• • • •
f

f

f

fη ε

Idea: simple processes are trivially controllable processes, so ‘appear both tightly and loosely’.

Definition

A cybernetic company is a a company with attitude whose objects are interfaces, loose arrows are

controllable processes, tight arrows are simple processes, and squares are control processes:

• •

• •

controllable process

controllable process

simple process simple processcontrol process
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Idea: simple processes are trivially controllable processes, so ‘appear both tightly and loosely’.

Definition
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controllable processes, tight arrows are simple processes, and squares are control processes:
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• •

controllable process

controllable process

simple process simple processcontrol process



Categorical cybernetics

Hence a company could be a good candidate for an objective definition of cybernetic process theory,

except we lack maps of interfaces and of processes which are not themselves processes.

process

• •

also a process

still a process • •

h k

f

g

υ

Thus we are forced to go 3D!



Cybernetic process theories
Definition

A cybernetic process theory is a triple category with attitude P where

1. objects are boundaries/interfaces,

2. transversal 2-cells are maps of boundaries,

3. vertical 1-cells are processes,

4. horizontal 1-cells are controllable processes,

I

J K

L

controllable process

map

process



Cybernetic process theories

Definition

A cybernetic process theory is a triple category with attitude P where

1. frontal 2-cells are control processes (and form a company),

2. vertical 2-cells are maps of processes,

3. horizontal 2-cells are maps of controllable processes

· ·

·

· ·

· ·

process

cont.ble process

map map

cont.ble process

cont.ble process

process

map

process

control process

map of processes

map of cont.ble processes



Cybernetic process theories

Definition

A cybernetic process theory is a triple category with attitude P where

1. cubes are maps of control processes

· ·

· ·

· ·

· ·

map

cont.ble process

process
control process

map of controlsmap of processes

map of cont.ble processes



Example: parametric lenses

One can promote the process theory of lenses to a cybernetic theory Para(Lens)1, with parametric

lenses in the role of controllable processes:

(
A−

A+

)

(
B−

B+

) (
C−

C+

)

(
D−

D+

)

(
P−

P−

)

1This notation is actually sound: there’s a Para construction that yields this triple category



Example: parametric lenses

Vertical 2-cells are the same kind we encountered before (‘commutative squares’):

(
A−

A+

)

(
C−

C+

)

(
B−

B+

)

(
D−

D+

)



Example: parametric lenses

Horizontal 2-cells are still of the same kind, but there’s an extra chart going between the parameters of

the parametric lenses:

(
B−

B+

) (
E−

E+

)

(
D−

D+

) (
F−

F+

)

(
P+

P−

)

(
Q−

Q+

)
(
h[

h

)



Example: parametric lenses

Basic 2-cells are commutative squares of parametric lenses:

(
A−

A+

) (
G−

G+

)

(
B−

B+

) (
E−

E+

)(
P−

P+

)

(
S−

S+

)

``]



Example: parametric lenses

A cube is an arrangement of faces such that the blue parts form a square in Lens:

· ·

· ·

· ·

· ·

(
P−

P+

)

(
S−

S+

)

(
Q−

Q+

)

(
T−

T+

)
``]

h

h[

k

k[

m

m]



Example: Nash equilibria

Categorical game theory (Capucci 2022; Capucci, Gavranović, Hedges, and Rischel 2021; Ghani,

Hedges, Winschel, and Zahn 2018) is nowadays based on the idea games are parametric lenses,

controlled by players.

In the same way fixpoints of Moore machines are maps (squares) from fix into them, one can show

Nash equilibria of games are maps (cubes) from fix into them:

(
1
1

) (
1
1

)

(
1
1

) (
1
1

) (
RN×X

X

) (
RN×Y

Y

)

(
RN×X

X

) (
RN×Y

Y

)(
RN×Ω

Ω

)

(
Ω
Ω

)

u

(
1
1

)

(
1
1

)

x̄

1Ω�N argmaxi

{ω}

ω

Here u : Y ! RN is a payoff function, x̄ an initial state, and ω̄ a strategy profile.



Example: Nash equilibria
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Towards behavioural cybernetics

We would like to recover the compositional formulae for Nash equilibria as functoriality of some

corepresentable behaviour “Plrs(fix,−)”, whatever this means.

This would require to come up with the same ingredients we’ve used for open dynamical systems:

1. A notion of cybernetic system theory over a given cybernetic process theory

2. An observational cybernetic system theory

3. A notion of behaviour functor between the two

It takes time to unpack all of these, so unfortunately I’m only going to be able to tell you about (1)
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It takes time to unpack all of these, so unfortunately I’m only going to be able to tell you about (1)



Cybernetic system theories

The crucial idea in the definition of cybernetic system theory is that a cybernetic process theory P can

be decomposed into two process theories:

1. A simple part, given by the double category of interfaces, maps theoreof, simple processes and

maps thereof.

2. A cybernetic part, whose objects are cybernetic processes, vertical 1-cells are control processes,

horizontal 1-cells are maps of controllable processes, and squares are maps of control processes.

Ph :=



• •

• •

• •

• •
map

cont.ble process

process
control process

map of controlsmap of processes

map of cont.ble processes





Cybernetic system theories

The crucial idea in the definition of cybernetic system theory is that a cybernetic process theory P can

be decomposed into two process theories:

1. A simple part, given by the double category of interfaces, maps theoreof, simple processes and

maps thereof.

Pt :=
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• •

• •

simple process
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2. A cybernetic part, whose objects are cybernetic processes, vertical 1-cells are control processes,

horizontal 1-cells are maps of controllable processes, and squares are maps of control processes.

Ph :=



• •

• •

• •

• •
map

cont.ble process

process
control process

map of controlsmap of processes

map of cont.ble processes





Cybernetic system theories

The crucial idea in the definition of cybernetic system theory is that a cybernetic process theory P can

be decomposed into two process theories:

1. A simple part, given by the double category of interfaces, maps theoreof, simple processes and

maps thereof.

2. A cybernetic part, whose objects are cybernetic processes, vertical 1-cells are control processes,

horizontal 1-cells are maps of controllable processes, and squares are maps of control processes.

Ph :=



• •

• •

• •

• •
map

cont.ble process

process
control process

map of controlsmap of processes

map of cont.ble processes





Cybernetic system theory

This suggests one can define a cybernetic system theory by putting together a system theory Sys on

Pt and a system theory Cyb on Ph:

P>h ×P>t
P>h Cat

P>h Cat

P>t Cat

#

s t1

Sys

Cyb

Cyb×CybCyb

#[

s[ 1[ t[



Cybernetic system theory

One can show that Cyb and Sys arrange to yield a triple functor

CybSys : P>
unitary lax-lax
−−−−−−−! Span(Cat)

where (−)> exchanges vertical and transversal 1-cells.

Thus, together with s[ and t[, Cyb assigns a span of functors to each controllable process:

Idea: the category Cyb picks out, for a given controllable process I
p
! J , is a category control system

U together with simple systems S ‘closing off’ p. This makes sense: a cybernetic system is a

controllable system coupled to a control system.

I
p
! J 7−! Sys(I) Cyb(I

p
! J) Sys(J)

s[p t[p



Cybernetic system theory

The triple functor P>
unitary lax
−−−−−! Span(Cat)...

1. ...associates a category to every controllable process, which are reindexed functorially by

control processes and profunctorially by maps of controllable processes,

2. ...gives each cybernetic system a source and a target simple system:

s[
I

p
!J

: Cyb(I
p
! J)! Sys(I),

t[
I

p
!J

: Cyb(I
p
! J)! Sys(J)

3. ...gives a mapping between simple systems with interface I and cybernetic systems controlling the

trivial process on I:

1[I : Sys(I) −! Cyb(I == I)

4. ...features a compatibility structure with sequential composition of cybernetic processes,

given by

#[
I

p
!J

J
q
!K

: Cyb(I
p
! J)×Sys(J) Cyb(J

q
! K) −! Cyb(I

p
! J

q
! K)
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Conclusions

There’s lots of work to do!

In categorical system theory, many examples deserve to be explored more. The behavioural study of

machines is an big subject, will categorical abstractions prove themselves useful?

In categorical cybernetic systems theory, it remains to develop and explore theories of cybernetic

systems both in general and particular.

First in line are applications to game theory, where it can be used to mint compositional structure for

equilibrium concepts.

Secondly, how can this framework be useful for other cybernetic systems theories? Can it be used to

frutifully map between learning & games? Can we use it to prove theorems across different kinds of

systems? (e.g. good regulator theorems/internal model principles/FEP).
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Thanks for your attention!

Questions?
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