### Lax Colimits and Fibrations of Double Categories

Dorette Pronk

Dalhousie University

Virtual Double Categories Workshop, December 1, 2022

### Grothendieck Constructions for Double Categories

This talk is based on two papers:

- G.S.H. Cruttwell, M.J. Lambert, D.A. Pronk, M. Szyld, Double fibrations, *Theory and Applications of Categories*, Vol. 38, 2022, No. 35, pp 1326-1394.
- M. Bayeh, D.A. Pronk, M. Szyld, A Grothendieck construction for double categories, in progress.

### The Grothendieck Construction / Category of Elements

For a pseudofunctor  $F: C \rightarrow Cat$ , the Grothendieck category of elements

 $\text{EIF} \to C$ 

can be characterized up to equivalence by either of the following two characterizations:

- A. EIF is the lax colimit of F in Cat.
- **B1. EI***F* is the value on objects of a 2-functor, which is an equivalence of 2-categories

**EI**: Hom<sub>p</sub>(C, **Cat**)  $\longrightarrow$  coFib(C)

**B2.** For  $F: C^{op} \rightarrow Cat$ , EIF is the value on objects of a 2-functor, which is an equivalence of 2-categories

**EI**: Hom<sub>$$p$$</sub>(C<sup>op</sup>, **Cat**)  $\longrightarrow$  Fib(C)

### Fibrations

Let  $P : \mathscr{E} \longrightarrow \mathscr{B}$  be a functor between categories.

• An arrow f of  $\mathscr{E}$  is Cartesian if:  $\begin{array}{ccc} Z & & PZ & Pg \\ \downarrow & & & \downarrow \\ h & & & \downarrow \\ Y & & & & PX & Py \\ & & & & & PY \end{array}$ 



 $B^* \xrightarrow{u^* E} E \iff B \xrightarrow{u} PE$ 

### (Cartesian lift)

• A cleavage is a choice of a Cartesian lift for each arrow of  $\mathscr{B}$ . A cloven fibration is a fibration and a chosen cleavage.

-Any cloven fibration gives rise to an Indexed category  $F : \mathscr{B}^{op} \to \mathbf{Cat}$ . -Any indexed category gives rise to a cloven fibration by its Grothendieck construction/category of elements.

### Morphisms of Fibrations

Given cloven fibrations  $P: \mathscr{E} \longrightarrow \mathscr{B}$  and  $P': \mathscr{E}' \longrightarrow \mathscr{B}'$ ,

• A morphism *f* between them is:  $\begin{array}{c} \mathcal{E} & \xrightarrow{f^{\top}} \mathcal{E}' \\ | & & \downarrow P' \\ \mathcal{B} & \xrightarrow{f^{\top}} \mathcal{B}' \\ \end{array}$ 

where  $f^{\top}$  preserves the Cartesian arrows.

- *f* is said to be **cleavage-preserving** when *f*<sup>⊤</sup> maps the arrows of the cleavage of *P* to arrows in the cleavage of *P'*.
- This defines 2-categories cFib ⊆ Fib ⊆ Arr<sup>s</sup>(Cat) (full on 2-cells, with objects the cloven fibrations).

The classical equivalence  $Fib \simeq ICat$  (with pseudo transformations) restricts to  $cFib \simeq ICat_t$  (with strict natural transformations.)

### **Double Categories**

• A double category is an internal category in Cat,

- It has
  - objects (objects of C<sub>0</sub>);
  - inner/horizontal arrows (arrows of  $C_0$ ),  $d_0(f) \xrightarrow{f} d_1(f)$ ;
  - outer/vertical arrows (objects of  $C_1$ ),  $s(v) \xrightarrow{v} t(v)$ ;
  - double cells (arrows of C<sub>1</sub>), denoted

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \alpha & \downarrow & \psi \\ A' & \stackrel{f'}{\longrightarrow} & B' \end{array}$$

where 
$$d_0(\alpha) = v$$
,  $d_1(\alpha) = w$ ,  $s(\alpha) = f$ , and  $t(\alpha) = f'$ .

### Examples

● For any 2-category C, Q(C) is the double category of quintets in C, with double cells

$$u \oint_{g} \alpha f \to gu \text{ in } \mathcal{C}.$$

**②** For any 2-category C,  $\mathbb{H}(C)$  is the double category with double cells

$$1_A \oint_{a} \alpha f \Rightarrow f a f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f a c f$$

**③** The double category  $\mathbb{V}(\mathcal{C})$  is defined analogously.

### More Examples

• For any 2-category  $\mathcal{C}$  with a distinguished family of arrows  $\Sigma$  that forms a sub-category, we can define  $\mathbb{Q}^{\Sigma}(\mathcal{C}) \subseteq \mathbb{Q}(\mathcal{C})$  by requiring the inner/horizontal arrows to be in  $\Sigma$ :

$$\begin{array}{ccc} A \xrightarrow{m} B \\ f & \downarrow \\ \phi & \downarrow \\ C \xrightarrow{n} D \end{array} \quad \text{for each } \alpha \colon gm \Rightarrow nf \text{ in } \mathcal{C}; \ m, n \in \Sigma \end{array}$$

Many examples of double categories are not exactly like this but have this *flavor*: Rel: functions and relations; Prof: functors and profunctors; Span(Cat): functions and spans; Ring: ring homomorphisms and bimodules; etc...

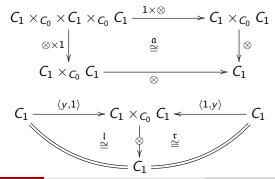
But note: except in  $\mathbb{R}$ el, vertical composition is no longer strict!

### (Pseudo) Double Categories

• A (pseudo) double category is an internal pseudo category in Cat,

$$C_1 \times_{C_0} C_1 \xrightarrow{\otimes} C_1 \xrightarrow{s \atop \underline{\leftarrow} y \xrightarrow{s}} C_0$$
.

The pull-back is still the same 2-pull-back, but instead of associativity and unit axioms we have invertible 2-cells (natural transformations)



### (Pseudo) Double Categories

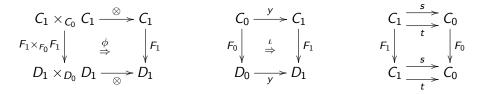
 A double category (Grandis-Paré, 1999) is a pseudo category in Cat,

- Informally, this means that inner (horizontal) composition remains strict, but external (vertical) composition is pseudo.
- There is a 2-category **DblCat** of pseudo (double=internal) categories, pseudo (double=internal) functors to be defined on the next slide, and (horizontal=internal) transformations.

We have now all the examples from before (and more!)

### Double Functors as Internal Functors

Internal pseudo categories can be considered in any 2-category  $\mathcal{K}$  with 2-pullbacks instead of **Cat** (Martins-Ferreira, 2006). A **lax double functor**  $F : \mathbb{C} \to \mathbb{D}$  consists then of two arrows  $F_0: C_0 \to D_0$  and  $F_1: C_1 \to D_1$  and comparison 2-cells (+ axioms)



If the comparison cells are invertible, F is a **pseudo double functor**.

Note that the interaction with s and t is required to be **stricter** than that with y and  $\otimes$ .

### The category **DblCat** - Definition

The category **DblCat** of double categories has:

- objects: double categories  $\mathbb{C}, \mathbb{D}, \ldots$ ;
- arrows: double functors *F*, *G*,...;
- transformations: these come in two flavors:
  - a horizontal transformation  $\gamma \colon F \Rightarrow G$  is given by

$$FA \xrightarrow{\gamma_A} GA$$

$$F_{V} \downarrow \qquad \gamma_{v} \qquad \downarrow G_{V} \qquad \text{for each } A \text{ in dom}(F)$$

$$FB \xrightarrow{\gamma_B} GB$$

pseudo functorial in the vertical direction and natural in the horizontal direction.

- vertical transformations *ν*: *F* ⇒ *G* are defined dually, pseudonatural in the vertical direction and functorial in the horizontal direction;
- modifications given by a family of double cells.

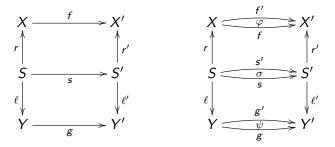
Dorette Pronk

### The category **DblCat** - Properties

- **DblCat** is not a double category;
- a double category has two types of arrows, and DblCat has only one;
- a double category has one type of 2-cell, and DblCat has two;
- there are 2-categories DblCat<sub>h</sub> and DblCat<sub>v</sub>;
- DblCat is *enriched* in double categories: DblCat(ℂ, D) is a double category for each pair of double categories ℂ, D;
- so we need to replace **DblCat** by a double category as codomain for the indexing functors.

### Replacements for **DblCat**, Option 1: Span(**Cat**)

- A **double 2-category** is a pseudo category in the 2-category of 2-categories, 2-functors and 2-natural transformations.
- There is a double 2-category  $\mathbb{S}pan(\mathcal{K})$  for any 2-category  $\mathcal{K}$  with double cells and 2-cells between them:



A lax double functor from the terminal double category to Span(Cat) is precisely a double category.

#### Double Grothendieck

### Replacements for **DblCat**, Option 2: $\mathbb{Q}$ **DblCat**<sub>v</sub>

When considering colimits of double categories we would like to have a double category that has double categories as objects. There are six double categories

- $\mathbb{V}$ **DblC**at<sub>h/v</sub>,
- $\mathbb{H}$ **DblC**at<sub>h/v</sub>
- $\mathbb{Q}$ **DblCat**<sub>h/v</sub>.

We will work with  $\mathbb{Q}$ **DblCat**<sub>v</sub>.

### Diagrams Indexed by a Double Category

These observations lead us to two types of "double indexing functors":

• When aiming for double fibrations: A double indexing functor is a *contravariant lax pseudo double functor*,

 $\mathbb{D}^{\mathsf{op}} \to \mathbb{S}\mathsf{pan}(\mathbf{Cat})$ 

where Span(Cat) is a double 2-category (as we are considering Cat here as a 2-category).

• When aiming for doubly lax colimits: An indexing double functor is a double functor

 $\mathbb{D} \to \mathbb{Q}(\mathsf{DblCat}_v),$ 

also referred to as a vertical double functor

$$\mathbb{D} \longrightarrow \mathsf{DblCat}$$

### Grothendieck for $F : \mathbb{D} \to \mathbb{S}pan(\mathbf{Cat})$

A lax double pseudo functor  $F \colon \mathbb{D}^{op} \to \mathbb{S}pan(\mathbf{Cat})$  gives rise to pseudo functors

$$\mathit{F}_0 \colon \mathbb{D}_0^{\mathsf{op}} \to \mathbb{S}\mathsf{pan}(\mathbf{Cat})_0 = \mathbf{Cat} \text{ and } \mathit{F}_1 \colon \mathbb{D}_1^{\mathsf{op}} \to \mathbb{S}\mathsf{pan}(\mathbf{Cat})_1 \overset{\mathsf{apx}}{\to} \mathbf{Cat}$$

The Grothendieck category of elements gives us cloven fibrations

$$\mathbb{E}I(F)_0 \to \mathbb{D}_0$$
 and  $\mathbb{E}I(F)_1 \to \mathbb{D}_1$ .

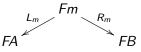
Now,  $\mathbb{E}I(F)_0$  and  $\mathbb{E}I(F)_1$  form the category of objects and arrows respectively of the double category  $\mathbb{E}I(F)$  with a *double fibration* 

$$\mathbb{E}I(F) o \mathbb{D}$$

### The Double Fibration $\mathbb{E}I(F) \to \mathbb{D}$

#### Notation

For  $F : \mathbb{D} \to \mathbb{S}pan(Cat)$ , and an outer arrow  $m : A \longrightarrow B$  of  $\mathbb{D}$ , we denote its image by

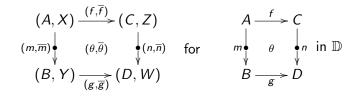


Then  $\mathbb{E}I(F)$  has

- Inner arrows  $(A, X) \xrightarrow{(f, \overline{f})} (C, Z)$  with  $f: A \to C$  in  $\mathbb{D}$  and  $\overline{f}: X \to f^*Z$  in FA;
- Outer arrows  $(m,\overline{m})$ :  $(A,X) \longrightarrow (B,Y)$  with  $m: A \longrightarrow B$  in  $\mathbb{D}$ and  $\overline{m} \in Fm$  such that  $L_m\overline{m} = X$  and  $R_m\overline{m} = Y$

### The Double Fibration $\mathbb{E}I(F) \to \mathbb{D}$

•  $\mathbb{E}I(F)$  has squares of the form



and  $\overline{\theta} \colon \overline{m} \to \theta^* \overline{n}$  in Fm such that  $L_m \overline{\theta} = \overline{f}$  and  $R_m \overline{\theta} = \overline{g}$ . • The projection double functor  $\mathbb{E}l(F) \to \mathbb{D}$  is a double fibration.

### What is a Double Fibration?

#### Suggestion

Take an internal category in Fib.

#### Problem

Fib doesn't have all the 2-pullbacks we would need.

Also, the *fibrational strictness* of *s* and *t* would the same as that of *y* and  $\otimes$ , which is not in line with what we know about pseudo double functors.

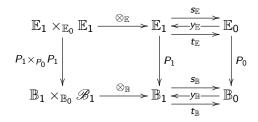
#### The solution

A double fibration is a pseudo category in **Fib** such that s and t are in c**Fib** (that is, they preserve the chosen cleavages).

This translates into:

### Definition of a Double Fibration

A **double fibration** as defined on the previous slide is the same as a (strict) double functor  $P : \mathbb{E} \to \mathbb{B}$  between (pseudo) double categories



such that

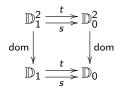
- $P_0$  and  $P_1$  are fibrations,
- they admit a cleavage such that s<sub>E</sub> and t<sub>E</sub> are cleavage-preserving, and
- **3**  $y_{\mathbb{E}}$  and  $\otimes_{\mathbb{E}}$  are Cartesian-morphism preserving.

### Some Examples

- When  $\mathbb{E}_0 = \mathbb{B}_0 = 1$ , we recover monoidal fibrations [1];
- For any 2-functor P : E → B, we have that P is a 2-fibration [2] if and only if QP : QE → QB is a double fibration;
- When P<sub>0</sub> and P<sub>1</sub> are discrete fibrations, we recover discrete double fibrations [3];
- The double Grothendieck construction in Definition 5.3 of [4] is also a double fibration.
- [1] Framed Bicategories and Monoidal Fibrations, Shulman (2008).
- [2] Fibred 2-Categories and Bicategories, Buckley (2014).
- [3] Discrete Double Fibrations, Lambert (2021).
- [4] Double Categories of Open Dynamical Systems, Myers (2021).

### More Examples

• The domain fibration: dom:  $\mathbb{D}^2 \to \mathbb{D},$ 



- $Im: \mathbb{S}pan \to \mathbb{R}el$  is a double opfibration.
- There is a split double fibration  $\Pi \colon \mathbb{F}am(\mathcal{C}) \to \mathbb{S}pan$ .
- $\bullet$  There is a codomain fibration cod:  $\mathbb{D}^2 \to \mathbb{D}$  if
  - $\mathbb{D}_1$  and  $\mathbb{D}_0$  have chosen finite limits,
  - these limits are preserved on the nose by s and t
  - and up to iso by y and  $\otimes$ .

### Double Fibrations are Internal Fibrations

The notion of *internal fibration* for a 2-category was given by Street in 1974. Let **DblCat** be the 2-category of pseudo double categories, pseudo functors and horizontal/inner transformations.

Theorem [Cruttwell, Lambert, P., Szyld]

A *strict* double functor  $P : \mathbb{E} \to \mathbb{B}$  is an internal fibration in **DblCat** if and only if it is a double fibration

### Double Fibrations are Internal Fibrations

The notion of *internal fibration* for a 2-category was given by Street in 1974. Let **DblCat** be the 2-category of pseudo double categories, pseudo functors and horizontal/inner transformations.

#### Theorem [Cruttwell, Lambert, P., Szyld]

A *strict* double functor  $P : \mathbb{E} \to \mathbb{B}$  is an internal fibration in **DblCat** if and only if it is a double fibration

In addition,

- A pseudo double functor P is an internal fibration in DblCat<sub>ℓ</sub> iff P<sub>0</sub> and P<sub>1</sub> are fibrations that admit cleavages preserved by s<sub>E</sub> and t<sub>E</sub>
- It is an internal fibration in **DblCat** iff in addition,  $y_{\mathbb{E}}$  and  $\otimes_{\mathbb{E}}$  are Cartesian-morphism preserving.
- a strict double functor P is an internal fibration in **DblCat**<sub>s</sub> iff  $P_0$  and  $P_1$  are fibrations that admit cleavages preserved by  $s_{\mathbb{E}}$ ,  $t_{\mathbb{E}}$ ,  $y_{\mathbb{E}}$  and  $\otimes_{\mathbb{E}}$ .

## The {Fibrations} $\stackrel{\simeq}{\leftarrow}$ {Indexed} Theorem

Let ISpan(Cat) be the category of contravariant lax pseudo double functors valued in the double 2-category Span(Cat).

Theorem [Cruttwell, Lambert, P., Szyld]

There is an equivalence of categories  $DblFib \simeq ISpan(Cat)$ 

Idea for the proof: use pseudo monoids in double 2-categories.

**Fib**  $\simeq$  **ICat** restricts to c**Fib**  $\simeq$  **ICat**<sub>t</sub>, so  $\mathbb{S}pan_c(Fib) \simeq \mathbb{S}pan_t(ICat)$ . Now we lift:

 $\mathsf{DblFib} := \mathsf{PsMon}(\mathbb{S}\mathsf{pan}_c(\mathsf{Fib})) \simeq \mathsf{PsMon}(\mathbb{S}\mathsf{pan}_t(\mathsf{ICat})) \simeq \mathsf{I}\mathbb{S}\mathsf{pan}(\mathsf{Cat}))$ 

Restricting to monoidal or to discrete fibrations, we recover the results in (Moeller-Vasilakopoulou, 2020) and (Lambert, 2021). The right-to-left functor restricts to the construction spelled out in (Paré, 2011).

### Option 2: Vertical Indexing Functors $F : \mathbb{D} \to \mathbb{Q}\mathbf{DblCat}_{v}$

We have so far only worked out the strict case, where both  $\mathbb{D}$  and F are assumed to be strict, and are working on the pseudo case.

Some concerns you may have:

- Have we lost our ability to use horizontal transformations and modifications?
- Have we lost our ability to distinguish between horizontal and vertical arrows in the indexing double category D?

No, they will show up in the notion of **doubly lax transformation**. Our lax colimits are lax with respect to a new notion of tranformation.

### Intro to Doubly Lax Transformations

- We will introduce a **cylinder double category** Cyl<sub>v</sub>(**DblCat**).
- There are vertical double functors

$$\operatorname{Cyl}_{v}(\operatorname{DblCat}) \xrightarrow[v]{v}{}_{v} \xrightarrow{d_{0}}{}_{d_{1}} \operatorname{DblCat}$$

 A doubly lax transformation α: F ⇒ G: D → DblCat is given by a double functor

$$\alpha \colon \mathbb{D} \to \operatorname{Cyl}_{\nu}(\mathsf{DblCat})$$

such that  $d_0 \alpha = F$  and  $d_1 \alpha = G$ .

### The Double Category of (Vertical) Cylinders

The double category  $Cyl_v$ (**DblCat**) of **vertical cylinders** is defined by:

- Objects are double functors, denoted by  $\downarrow f$ .
- Vertical arrows  $f \xrightarrow{(u,\mu,v)} \overline{f}$  are given by vertical transformations,

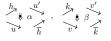


• Horizontal arrows  $f \xrightarrow{(h,\kappa,k)} f'$  are given by horizontal transformations,

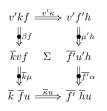


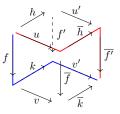
### **Double Cylinders**

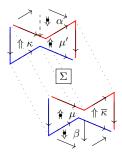
# A double cell, $(u,\mu,v) \oint_{V} (\alpha,\Sigma,\beta) \oint_{V} (u',\mu',v')$ consists of two vertical 2-cells, $\overline{f} \xrightarrow[(\overline{h},\overline{\kappa},\overline{k})]{\overline{f'}} \overline{f'}$



and a modification  $\Sigma$ ,







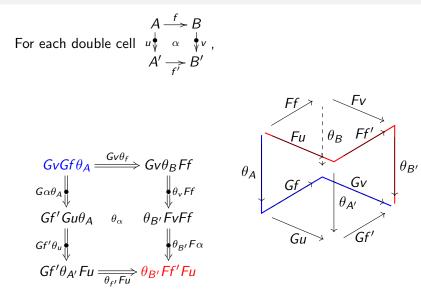
### Cylinders and Transformations

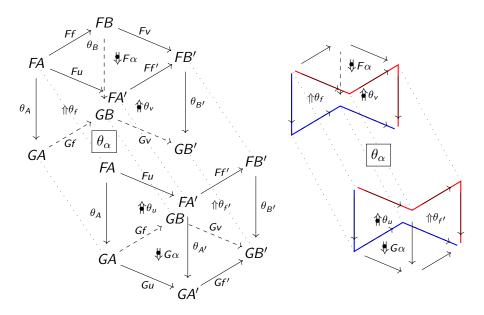
- There are vertical double functors d<sub>0</sub>, d<sub>1</sub>: Cyl<sub>v</sub>(DblCat) → DblCat, sending a cylinder to its top and bottom respectively;
- A doubly lax transformation θ: F ⇒ G between vertical double functors F, G: D → DblCat is given by a double functor

 $\theta \colon \mathbb{D} \to \operatorname{Cyl}_{v}(\operatorname{DblCat}),$ 

such that  $d_0\theta = F$  and  $d_1\theta = G$ .

### Doubly Lax Transformations $\theta \colon F \Rightarrow G$





### Doubly Lax Transformations

- Let  $F, G: \mathbb{D} \longrightarrow \mathbf{DblCat}$  be vertical double functors.
- Since doubly lax transformations F ⇒ G are represented by double functors,

$$\mathbb{D} \to \operatorname{Cyl}_{v}(\mathsf{DblCat})$$

they are the objects of a hom double category

 $\mathbb{H}om_{d\ell}(F,G) \subset \mathbf{DblCat}(\mathbb{D}, \mathrm{Cyl}_{\nu}(\mathbf{DblCat})).$ 

### Lax Transformations Between 2-Functors

- By applying Q to the hom-categories of a 2-category B, we can make it into a **DblCat**-enriched category Q(B).
- This allows us to view lax transformations between 2-functors as a special case of the new doubly lax transformations.



- By taking a restricted  $\mathbb{Q}$  on the codomain, taking only a particular class  $\Omega$  of 2-cells of  $\mathcal{B}$  for the local horizontal arrows, we obtain  $\Omega$ -transformations.
- By taking a restricted  ${\mathbb Q}$  on the domain, we get  $\Sigma\text{-transformations.}$

### **Doubly Lax Colimits**

- A doubly lax cocone for a vertical double functor F : D → DblCat with vertex E ∈ DblCat is a doubly lax transformation F ⇒ ΔE.
- There is a double category,

$$\mathbb{L}C(F,\mathbb{E}) := \mathbb{H}om_{d\ell}(F,\Delta\mathbb{E})$$

of doubly lax cocones with vertex  $\mathbb{E}$ .

A doubly lax cocone F ⇒ ΔL is the doubly lax colimit of F if, for every E ∈ DblCat,

$$\mathsf{DblCat}(\mathbb{L},\mathbb{E}) \stackrel{\lambda^*}{\longrightarrow} \mathbb{L}\mathsf{C}(F,\mathbb{E})$$

is an isomorphism of double categories.

The doubly lax colimit can be obtained by a double Grothendieck construction, denoted by Gr F = ∫<sub>D</sub> F.

# The Double Grothendieck Construction: Objects and Arrows

Let  $\mathbb{D} \xrightarrow{F} \mathbf{DblCat}$  be a vertical double functor. The **double category of** elements,  $\mathbb{G}r F = \int_{\mathbb{D}} F$ , is defined by:

- Objects: (C, x) with C in  $\mathbb{D}$  and x in FC,
- Vertical arrows:

$$(C,x) \xrightarrow{(u,\rho)} (C',x'),$$

where  $C \xrightarrow{u} C'$  in  $\mathbb{D}$  and  $Fux \xrightarrow{\rho} x'$  in FC'.

• Horizontal arrows:

$$(C,x) \xrightarrow{(f,\varphi)} (D,y),$$

where  $C \xrightarrow{f} D$  in  $\mathbb{D}$ , and  $Ffx \xrightarrow{\varphi} y$  in FD.

#### The Double Grothendieck Construction: Double Cells

• Double cells: 
$$(u,\rho) \oint (\alpha,\Phi) = (v,\lambda)$$
, where  $\alpha: (u \stackrel{f}{_{f'}} v)$  is a double  $(C',x') \xrightarrow{(f',\varphi')} (D',y')$ 

cell in  $\mathbb{D}$  and  $\Phi$  is a double cell in *FD*':

#### Factorization

- Any horizontal arrow  $(f, \varphi)$  can be factored as  $(A, x) \xrightarrow{(f, 1_{Ffx})} (B, Ffx) \xrightarrow{(1_B, \varphi)} (B, y).$
- Any vertical arrow  $(u, \rho)$  can be factored as

$$(A,x) \stackrel{(u,1_{F_{UX}})}{\longrightarrow} (A',Fux) \stackrel{(1_{A'},\rho)}{\longrightarrow} (A',x').$$

And any double cell (α, Φ) can be factored as

$$\begin{array}{c|c} (A,x) & \xrightarrow{(f,1_{Ffx})} (B,Ffx) \xrightarrow{(1_B,\varphi)} (B,y) \\ & \downarrow & (v,1_{F(vf)x}^{\bullet}) \downarrow & (1_v,1_{Fv\varphi}^{\bullet}) & \downarrow (v,1_{Fvy}^{\bullet}) \\ (u,1_{Fux}^{\bullet}) \downarrow & (\alpha,1_{(F\alpha)x}) & (B',FvFfx) \xrightarrow{(1_{B'},Fv\varphi)} (B',Fvy) \\ & \downarrow & (\alpha,1_{(F\alpha)x}) & (B',FvFfx) \xrightarrow{(1_{B'},Fv\varphi)} (B',Fvy) \\ & \downarrow & (1_{B'}^{\bullet},(F\alpha)x) \\ & \downarrow & (1_{B'}^{\bullet},(F\alpha)x) & \downarrow \\ (A',Fux) \xrightarrow{(f',1_{F(f'x)})} (B',Ff'Fux) & (1_{B'}^{\Box},\Phi) & \downarrow \\ (1_{A'}^{\bullet},\rho) \downarrow & (1_{f'}^{\bullet},1_{Ff'\rho}) & \downarrow \\ (A',x') \xrightarrow{(f',1_{Ff'x'})} (B',Ff'x') \xrightarrow{(1_{B'},\varphi')} (B',y') \end{array}$$

Dorette Pronk

#### The Main Theorem

• There is a doubly lax cocone  $F \xrightarrow{\lambda} \Delta \mathbb{G}r F$  with the required universal property:

$$\lambda^*\colon \mathbf{DblCat}\left(\int_{\mathbb{D}} \mathcal{F}, \mathbb{E}\right) \to \mathbb{LC}\left(\int_{\mathbb{D}} \mathcal{F}, \mathbb{E}\right)$$

is an iso of double categories for all  $\mathbb{E} \in \textbf{DblCat}.$ 

• Furthermore,  $\int_{\mathbb{D}}$  extends to a functor of DblCat-categories

 $\mathsf{Hom}_{\nu}(\mathbb{D},\mathsf{DblCat})_{d\ell} \to \mathsf{DblCat}/\mathbb{D}$ 

which is locally an isomorphism of double categories

$$\mathbb{H}om_{d\ell}(F,G) \cong (\mathsf{DblCat}/\mathbb{D}) \left( \int_{\mathbb{D}} F \to \mathbb{D}, \int_{\mathbb{D}} G \to \mathbb{D} \right)$$

#### Application I: Tricolimits in 2-Cat

For a 2-category A and a 2-functor F: A → 2-Cat, we construct a double index functor as follows. First take

$$\mathcal{A} \xrightarrow{F} 2\text{-Cat} \xrightarrow{\mathbb{V}} \text{DblCat}_{v}$$

and then apply  $\ensuremath{\mathbb{V}}$  to obtain:

$$\mathbb{V}(\mathcal{A}) \xrightarrow{\mathbb{V}(\mathbb{V} \circ F)} \mathbb{V}(\mathsf{DblCat}_{\nu}) \xrightarrow{\mathsf{incl}} \mathbb{Q}(\mathsf{DblCat}_{\nu}).$$

• Applying the double Grothendieck construction gives us

$$\int_{\mathbb{V}\mathcal{A}}\mathbb{V}(\mathbb{V}\circ F)=\mathbb{V}\int_{\mathcal{A}}F$$

(as defined by Bakovic and Buckley)

- The functor  $\mathbb{V}: 2\text{-}Cat \rightarrow DblCat_v$  induces an isomorphism of 3-categories between 2-Cat and its image in  $DblCat_v$ .
- It follows that  $\int_{\mathcal{A}} F$  is the **lax tricolimit** of F in **2-Cat**.

#### Application II: Categories of Elements

• For a functor  $F \colon \mathsf{A} \to \mathbf{Set}$  ,

$$\operatorname{colim} F = \pi_0 \mathbf{EI}(dF),$$

where

$$A \xrightarrow{F} \mathbf{Set} \xrightarrow{d} \mathbf{Cat}$$

and **EI** (*dF*) has objects (*A*, *x*) with  $x \in F(A)$  and arrows  $f: (A, x) \to (A', x')$  where  $f: A \to A'$  with F(f)(x) = x'.

 This follows from the universal property of the elements construction as lax colimit by applying it to cones with discrete categories as vertex and using the adjunction π<sub>0</sub> ⊢ d. • We can apply the same paradigm to a functor  $F: \mathcal{A} \rightarrow \mathbf{Cat}$  and use

where the  $\pi_0$  is taken with respect to horizontal arrows and cells to obtain a quotient of the vertical category of a double category.

- It follows from our Main Theorem that π<sub>0</sub> ∫<sub>ⅢA</sub> Q(V ∘ F) gives the strict 2-categorical colimit of F.
- ∫<sub>ⅢA</sub> Q(V ∘ F) is actually El(F), introduced by Paré (1989): its double cells "(α, Φ)" are in this case given by 2-cells α: f ⇒ f' in A:

$$(C, x) \xrightarrow{(f, id)} (D, y) \qquad Ffx \xrightarrow{id} Ffx$$
  
$$(id, \rho) \downarrow (\alpha, id) \downarrow (id, \lambda) \qquad (F\alpha)_x \downarrow id \downarrow \lambda$$
  
$$(C, x') \xrightarrow{(f', id)} (D, y') \qquad Ff'x \xrightarrow{Ff'\rho} Ff'x'$$

#### Application III: The double categorical wreath product

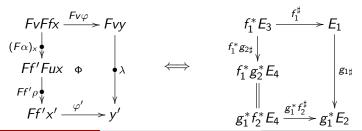
For a functor  $F: \mathscr{A}^{op} \to \mathbf{Cat}$ , we consider:

$$\mathscr{A}^{\mathsf{op}} \xrightarrow{F} \mathsf{Cat} \xrightarrow{\mathbb{Q}} \mathsf{DblCat}_v \xrightarrow{()^{\wedge}} \mathsf{DblCat}_v$$

where  $\mathbb{E}\to\mathbb{E}^\wedge$  is the horizontal flip functor, and apply  $\mathbb{Q}$  to all of this:

$$\int_{\mathbb{Q}\mathscr{A}}\mathbb{Q}((\mathbb{Q}\circ F)^{\wedge})=F\wr F^{op}$$

as introduced by Myers (2020). In this case our  $\Phi$  in  $(\alpha, \Phi)$  matches the basic diagram in his definition



#### $\mathbb{G}r\, F \to \mathbb{D}$ is also a fibration

A double functor  $P : \mathbb{E} \to \mathbb{B}$  is an **hv-split coop-fibration** if the following four induced functors are opfibrations of categories that admit cleavages that are suitably **compatible** and **hv-split**.

- 1v. Opfibration on vertical arrows:  $P \colon \mathscr{V}\mathbb{E} \to \mathscr{V}\mathbb{B}$  between the categories of objects and vertical arrows,
- 1h. Opfibration on horizontal arrows:  $P: \mathscr{H}\mathbb{E} \to \mathscr{H}\mathbb{B}$  between the categories of objects and horizontal arrows,
- 2h. Opfibration on double cells with horizontal composition: P: E<sub>1</sub><sup>h</sup> → B<sub>1</sub><sup>h</sup> between the categories which have vertical arrows as objects and double cells as arrows with horizontal composition, and, let (E<sub>1</sub><sup>v</sup>)<sub>f</sub> be the *fiber category* which has horizontal arrows C → D over PC <sup>1</sup>/<sub>PC</sub> PC as objects and double cells α : (u <sup>g</sup>/<sub>g'</sub> v) over 1<sub>Pu</sub> : (Pu <sup>1</sup>/<sub>1</sub> Pu) as arrows, composed vertically,
  2v.1 Opfibration on the 2h-fibers with vertical composition: P<sub>f</sub>: (E<sub>1</sub><sup>v</sup>)<sub>f</sub> → 𝒴B; where P<sub>f</sub> maps C → D as above to PC and α as above to Pu.

#### The connection with 2-fibrations

#### Proposition (Bayeh, P., Szyld)

Let  $P: B \to E$  be a 2-functor between 2-categories. Then P is a split-2-coop-fibration as in (Buckley, 2014) if and only if  $\mathbb{V}P: \mathbb{V}B \to \mathbb{V}E$  is an hv-split coop-fibration.

# The Correspondence

#### Theorem (Bayeh, P., Szyld)

The double Grothendieck construction  $\mathbb{G}r$  is the value on objects of a **Dblcat**-functor

$$\mathcal{H}om_{\nu}(\mathbb{D}, \mathcal{D}blCat)_{s} \xrightarrow{\mathbb{G}r} \mathbf{coop}\mathcal{F}ib_{h\nu-s}(\mathbb{D}),$$

which is an equivalence of **Dblcat**-categories; that is, it is esentially surjective and locally an isomorphism of double categories

$$\mathbb{H}om_{s}(F,G) \stackrel{\mathbb{G}r}{\longrightarrow} (\mathbf{coop}\mathcal{F}\mathbf{ib}_{hv-s}(\mathbb{D}))(\mathbb{G}rF,\mathbb{G}rG)$$
(5.2)

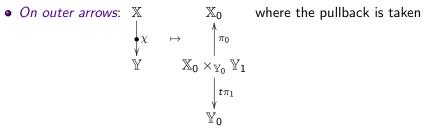
# The double functor $S: \mathbb{Q}$ **DblCat**<sub> $\nu$ </sub> $\rightarrow \mathbb{S}$ pan(**Cat**)

There is a double functor connecting the two codomain options we have explored:

 $S: \mathbb{O}\mathsf{DblCat}_{V} \to \mathbb{S}\mathsf{pan}(\mathsf{Cat})$ 

defined as follows:

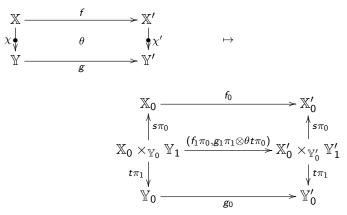
- On objects:  $\mathbb{X} \mapsto \mathbb{X}_0$ ;
- On inner arrows:  $(\mathbb{X} \xrightarrow{f} \mathbb{Y}) \mapsto (\mathbb{X}_0 \xrightarrow{f_0} \mathbb{Y}_0);$



with respect to  $\chi_0$  and s.

## The double functor $S: \mathbb{Q}DblCat_{v} \rightarrow \mathbb{S}pan(Cat)$

• On double cells:



El(S ∘ F) = Gr(F) for any indexing functor F: D → QDblCat<sub>v</sub>.
Work in progress: can we view El(F) as a double colimit for more general indexing functors into Span(Cat)?

Dorette Pronk

#### Double Grothendieck