Double category $Mnd(\mathbb{D})$	

Gray-type monoidal product and Bifunctor Theorem for double categories

Bojana Femić

Virtual Double Categories Workshop

The speaker was supported by the Science Fund of the Republic of Serbia, Grant No. 7749891, Graphical Languages - GWORDS

29 November 2022

Mathematical Institute of Serbian Academy of Sciences and Arts Belgrade (Serbia)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Double category $Mnd(\mathbb{D})$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Overview of the talk

Introductory part:

double categories (as specific internal categories)

Overview of the talk

Introductory part:

- double categories (as specific internal categories)
- double category of monads (why "vertical morphisms" of monads are useful)

Overview of the talk

Introductory part:

- double categories (as specific internal categories)
- double category of monads (why "vertical morphisms" of monads are useful)

Gray-type tensor product on double categories

Gray-type tensor product on (strict-strict) double categories

Overview of the talk

Introductory part:

- double categories (as specific internal categories)
- double category of monads (why "vertical morphisms" of monads are useful)

Gray-type tensor product on double categories

Gray-type tensor product on (strict-strict) double categories

Bifunctor Theorem for (lax-hop) double categories

Overview of the talk

Introductory part:

- double categories (as specific internal categories)
- double category of monads (why "vertical morphisms" of monads are useful)

Gray-type tensor product on double categories

- Gray-type tensor product on (strict-strict) double categories
- Bifunctor Theorem for (lax-hop) double categories
 - Gray-type tensor product on (strict-lax) double categories
 - Bifunctor Theorem
 - "(Un)currying 2-functors
 - application to monads in double categories

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Double categories

Double categories ●00000	Double category $Mnd(\mathbb{D})$ 0000	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Double categories

Bicategory:

- 0-cells
- 1-cells
- 2-cells

Double categories ●00000	Double category $Mnd(\mathbb{D})$ 0000	

Double categories

Bicategory:

- 0-cells
- 1-cells
- 2-cells

Double category:

- 0-cells
- vertical 1-cells horizontal 1-cells
 - squares (2-cells)

Double category as internal category

A double category is an internal category in the category Cat_1 .

Double category as internal category

A **double category** is an internal category in the category Cat₁.

There are: • categories C_0 , C_1 (0-cells in Cat₁)

Double category as internal category

A double category is an internal category in the category Cat₁.

There are:

- categories C_0, C_1 (0-cells in Cat₁)
- functors (1-cells in Cat₁)
- $s,t:C_1 \rightarrow C_0, \quad u:C_0 \rightarrow C_1 \quad \text{and} \ c:C_1 imes_{C_0} \ C_1 \rightarrow C_1$

Double category as internal category

A double category is an internal category in the category Cat₁.

There are:

- categories C_0, C_1 (0-cells in Cat₁)
- functors (1-cells in Cat₁)
- $s, t: C_1 \to C_0, \quad u: C_0 \to C_1 \quad \text{and } c: C_1 \times_{C_0} C_1 \to C_1$ s.t. • c is associative and unital.

Double category as internal category

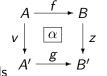
A double category is an internal category in the category Cat₁.

There are:

• vertical 1-cells

s.t.

- categories C₀, C₁ (0-cells in Cat₁)
 functors (1-cells in Cat₁)
- $s,t:C_1
 ightarrow C_0, \quad u:C_0
 ightarrow C_1 \quad ext{and} \ c:C_1 imes_{C_0} C_1
 ightarrow C_1$
 - c is associative and unital.
 - 0-cells



- horizontal 1-cells
 - squares (2-cells)

Double category as internal category

A double category is an internal category in the category Cat₁.

There are: • categories C_0 , C_1 (0-cells in Cat₁) • functors (1-cells in Cat₁) $s, t: C_1 \rightarrow C_0$, $u: C_0 \rightarrow C_1$ and $c: C_1 \times_{C_0} C_1 \rightarrow C_1$ s.t. • c is associative and unital. • $d \xrightarrow{f} B$ • 0-cells • vertical 1-cells • horizontal 1-cells

• squares (2-cells)

 C_0 : 0-cells and 1v-cells, C_1 : 1h-cells and 2-cells.

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat₂.

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat₂.

(an internal category in Cat₂)

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat₂.

(an internal category in Cat₂)

There are:

 $s,t:C_1
ightarrow C_0, \quad u:C_0
ightarrow C_1 \quad ext{and} \ c:C_1 imes_{C_0} \ C_1
ightarrow C_1$

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat₂.

(an internal category in Cat₂)

There are:

$$s, t: C_1 \to C_0, \quad u: C_0 \to C_1 \quad \text{and } c: C_1 \times_{C_0} C_1 \to C_1$$

• natural transformations (2-cells in Cat₂
 $\alpha: c \otimes (id_{C_1} \times_{C_0} c) \Rightarrow c \otimes (c \times_{C_0} id_{C_1})$

$$\lambda: \boldsymbol{c} \otimes (\boldsymbol{u} \times_{C_0} \boldsymbol{id}_{C_1}) \Rightarrow \boldsymbol{id}_{C_1}$$

$$\rho: \boldsymbol{c} \otimes (\boldsymbol{id}_{C_1} \times_{C_0} \boldsymbol{u}) \Rightarrow \boldsymbol{id}_{C_1}$$

which satisfy a pentagon and a triangle.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

A **bicategory** known to everyone:

0: algebras A, B..., 1: A-B-<u>bimodules</u>,

2: bimodule morphisms.

A **bicategory** known to everyone: 0: algebras *A*, *B*..., 1: *A*-*B*-<u>bimodules</u>, 2: bimodule morphisms.

Pseudodouble category:

- 0: algebras A, B
- 1v: alg. morphisms 1h: A-B-bimodules
 - 2: bimodule morphisms

A **bicategory** known to everyone: 0: <u>algebras</u> *A*, *B*..., 1: *A*-*B*-<u>bimodules</u>, 2: <u>bimo</u>dule morphisms.

Pseudodouble category:

- 0: algebras A, B
- 1v: alg. morphisms 1h: A-B-bimodules
 - 2: bimodule morphisms

 $\alpha: M \to N \quad A\text{-}B\text{-bimodule morphism}$ $a \cdot n \cdot b := g(a) \cdot n \cdot f(b)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Bicategories and pseudodouble categories

▶ In every pseudodouble category there is a bicategory:

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities,

Bicategories and pseudodouble categories

In every <u>pseudodouble category</u> there is a <u>bicategory</u>: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

Bicategories and pseudodouble categories

► In every <u>pseudodouble category</u> there is a <u>bicategory</u>: for vertical morphisms take only identities, and correspondingly "globular 2-cells". $A \xrightarrow{f} B = \bigcup_{a \in g} \bigcup_{b \in G} B$

(This is the *horizontal bicategory* $\mathcal{H}(\mathbb{D})$ of the pseudodouble category \mathbb{D} .)

Bicategories and pseudodouble categories

In every <u>pseudodouble category</u> there is a <u>bicategory</u>: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

(This is the *horizontal bicategory* $\mathcal{H}(\mathbb{D})$ of the pseudodouble category \mathbb{D} .)

Each bicategory can be embedded into a pseudodouble category.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Bicategories and pseudodouble categories

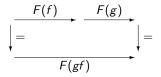
In every <u>pseudodouble category</u> there is a <u>bicategory</u>: for vertical morphisms take only identities, and correspondingly "globular 2-cells".
A — f B

(This is the *horizontal bicategory* $\mathcal{H}(\mathbb{D})$ of the pseudodouble category \mathbb{D} .)

- Each bicategory can be embedded into a pseudodouble category.
- Every pseudodouble category is double-equivalent to a double category [Grandis-Paré: "Limits in double categories" (1999)].

Functors of double categories

- (strict) double functors,
- pseudo double functors,
- (co)lax double functors.



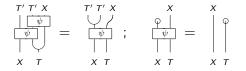
Why the 2-category $Mnd(\mathcal{K})$ of 2-monads isn't enough

The 2-category $\mathsf{Mnd}(\mathcal{K})$ of monads in \mathcal{K}

0-cells:

2-monads
$$(\mathcal{A}, T: \mathcal{A} \rightarrow \mathcal{A}, \mu_T: TT \rightarrow T, \eta_T: \mathsf{Id}_{\mathcal{A}} \rightarrow T)$$

<u>1-cells:</u> pairs $(X, \psi) : (\mathcal{A}, T) \to (\mathcal{A}', T')$ where $X : \mathcal{A} \to \mathcal{A}'$ is a 1-cell and $\psi : T'X \Rightarrow XT$ a 2-cell s.t.



<u>2-cells:</u> $(X, \psi) \Rightarrow (Y, \psi')$ are given by 2-cells $\zeta : X \to Y$ in \mathcal{K} satisfying:

$$\begin{array}{ccc} T' X & T' X \\ \hline \psi \\ \hline \zeta \\ \hline \zeta \\ \end{array} = \begin{array}{c} T' X \\ \hline \zeta \\ \psi' \\ \psi' \\ \end{array} \\ \hline \psi' \\ \gamma T & \gamma T \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects) are monads in *Span*(\mathcal{V}) (resp. in *Span*_d(\mathcal{V}))

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

- internal categories (with a discrete object of objects) are monads in $Span(\mathcal{V})$ (resp. in $Span_d(\mathcal{V})$)
- enriched categories are monads in *V-Mat*.

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

- internal categories (with a discrete object of objects) are monads in $Span(\mathcal{V})$ (resp. in $Span_d(\mathcal{V})$)
- enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories $Span_d(\mathcal{V})$ and \mathcal{V} -Mat are not functors of categories internal in \mathcal{V} , resp. of categories enriched over \mathcal{V} .

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** $Mnd(\mathbb{D})$ of monads:

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** $Mnd(\mathbb{D})$ of monads:

- (double) monads
- vertical monad maps

- horizontal monad maps
 - squares (2-cells)

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** $Mnd(\mathbb{D})$ of monads:

- (double) monads
- vertical monad maps

- horizontal monad maps
 - squares (2-cells)

This allows to **describe mathematical structures** and **morphisms between them**

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** $Mnd(\mathbb{D})$ of monads:

- (double) monads
- vertical monad maps

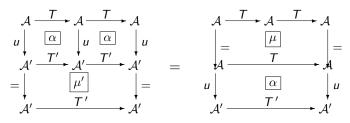
- horizontal monad maps
 - squares (2-cells)

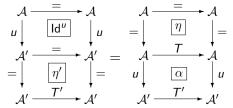
This allows to describe mathematical structures and morphisms between them as <u>monads</u> and vertical monad maps in appropriate double categories. Double category $Mnd(\mathbb{D})$ 000• Gray tensor product on double cats 0000

Bifunctor Thm 0000000

The double category $Mnd(\mathbb{D})$ of (double) monads

1v-cells:





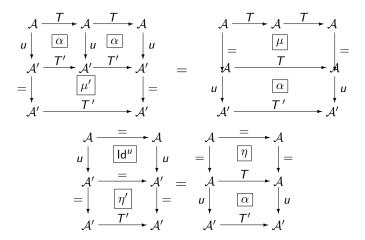
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへ()

Double category $\mathsf{Mnd}(\mathbb{D})$ 000 \bullet Gray tensor product on double cats 0000

Bifunctor Thm 0000000

The double category $Mnd(\mathbb{D})$ of (double) monads

1v-cells:



 \Rightarrow 1v-cells in Mnd($\underline{\underline{\mathsf{Span}}(\mathcal{V})})$ are internal functors in $\mathcal V$

ロト (雪) (主) (主) (主) のへで

Double category $\mathsf{Mnd}(\mathbb{D})$ 000 \bullet Gray tensor product on double cats 0000

Bifunctor Thm 0000000

The double category $Mnd(\mathbb{D})$ of (double) monads

1v-cells:



⇒ 1v-cells in Mnd(Span(\mathcal{V})) are internal functors in \mathcal{V} ⇒ 1v-cells in Mnd($\overline{\underline{\mathcal{V}}$ -Mat}) are \mathcal{V} -enriched functors.

Gray tensor product on double categories

Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	
	0000	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Gray tensor product

Gray tensor product gives a (left and \underline{right}) closed monoidal structure on a category:

	Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	
000000		0000	0000000

Gray tensor product gives a (left and <u>right</u>) closed monoidal structure on a category: $C(X = X = \overline{Z}) \approx C(X = \overline{X})$

$$\mathcal{C}(X \otimes Y, Z) \cong \mathcal{C}(Y, [X, Z])$$

*ロ * * @ * * 目 * ヨ * ・ ヨ * の < や

isomorphism natural in $X, Y, Z \in C$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

	Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	
000000		0000	0000000

Gray tensor product gives a (left and <u>right</u>) closed monoidal structure on a category: $C(X = X = \overline{Z}) \approx C(X = \overline{X})$

$$\mathcal{C}(X \otimes Y, Z) \cong \mathcal{C}(Y, [X, Z])$$

isomorphism natural in $X, Y, Z \in C$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

▶ There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Double categories	Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	Bifunctor Thm
000000	0000	0000	0000000

Gray tensor product gives a (left and <u>right</u>) closed monoidal structure on a category: $2(V + V - \overline{Z}) \approx 2(V + V - \overline{Z})$

$$\mathcal{C}(X \otimes Y, Z) \cong \mathcal{C}(Y, [X, Z])$$

isomorphism natural in $X, Y, Z \in C$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

► There is composition: [B, C] × [A, B] → [A, C], a morphism in C defined via ev's.

When C = 2-Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun(A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Double categories	Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	
000000	0000	0000	0000000

Gray tensor product gives a (left and <u>right</u>) closed monoidal structure on a category: $C(X = X = \overline{Z}) \approx C(X = \overline{X})$

$$\mathcal{C}(X \otimes Y, Z) \cong \mathcal{C}(Y, [X, Z])$$

isomorphism natural in $X, Y, Z \in C$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

► There is composition: [B, C] × [A, B] → [A, C], a morphism in C defined via ev's.

When C = 2-Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun(A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications). BUT:

the composition $c : \operatorname{Fun}(\mathcal{B}, \mathcal{C}) \times \operatorname{Fun}(\mathcal{A}, \mathcal{B}) \to \operatorname{Fun}(\mathcal{A}, \mathcal{C})$ isn't a 2-functor:

Double categories	Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	
000000	0000	0000	0000000

Gray tensor product gives a (left and <u>right</u>) closed monoidal structure on a category: $C(X = X = \overline{Z}) \approx C(X = \overline{X})$

$$\mathcal{C}(X \otimes Y, Z) \cong \mathcal{C}(Y, [X, Z])$$

isomorphism natural in $X, Y, Z \in C$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

► There is composition: [B, C] × [A, B] → [A, C], a morphism in C defined via ev's.

When C = 2-Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun(A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications). BUT:

the composition $c : \operatorname{Fun}(\mathcal{B}, \mathcal{C}) \times \operatorname{Fun}(\mathcal{A}, \mathcal{B}) \to \operatorname{Fun}(\mathcal{A}, \mathcal{C})$ isn't a 2-functor: although 1-cells (lax transformations) compose nicely, the 2-functor condition on them for c translates into the "interchange law": $\frac{\beta}{\beta'} \circ \frac{\alpha}{\alpha'} = \frac{\beta \circ \alpha}{\beta' \circ \alpha'}$

Double categories	Double category $Mnd(\mathbb{D})$	Gray tensor product on double cats	
000000	0000	0000	0000000

Gray tensor product gives a (left and <u>right</u>) closed monoidal structure on a category: $C(X = X = \overline{Z}) \approx C(X = \overline{X})$

$$\mathcal{C}(X \otimes Y, Z) \cong \mathcal{C}(Y, [X, Z])$$

isomorphism natural in $X, Y, Z \in C$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

▶ There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

When C = 2-Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun(A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications).

BUT:

the composition $c : \operatorname{Fun}(\mathcal{B}, \mathcal{C}) \times \operatorname{Fun}(\mathcal{A}, \mathcal{B}) \to \operatorname{Fun}(\mathcal{A}, \mathcal{C})$ isn't a 2-functor: although 1-cells (lax transformations) compose nicely, the 2-functor condition on them for c translates into the "interchange law": $\frac{\beta}{\beta'} \circ \frac{\alpha}{\alpha'} = \frac{\beta \circ \alpha}{\beta' \circ \alpha'}$ and the interchange does not hold in general on lax transformations (strictness of transformations is needed).

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category $\mathcal{A}\otimes \mathcal{B}$ s.t.:

 $2\text{-}\mathsf{Cat}(\mathcal{A}\otimes\mathcal{B},\mathcal{C})\cong 2\text{-}\mathsf{Cat}(\mathcal{B},\mathsf{Fun}(\mathcal{A},\mathcal{C})).$

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category $\mathcal{A}\otimes\mathcal{B}$ s.t.:

 $2\operatorname{-Cat}(\mathcal{A}\otimes\mathcal{B},\mathcal{C})\cong 2\operatorname{-Cat}(\mathcal{B},\operatorname{Fun}(\mathcal{A},\mathcal{C})).$

A description of $\mathcal{A} \otimes \mathcal{B}$ is obtained by seeing what a 2-functor $F : \mathcal{B} \to \operatorname{Fun}(\mathcal{A}, \mathcal{C})$ is.

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category $\mathcal{A}\otimes \mathcal{B}$ s.t.:

 $2\operatorname{-Cat}(\mathcal{A}\otimes\mathcal{B},\mathcal{C})\cong 2\operatorname{-Cat}(\mathcal{B},\operatorname{Fun}(\mathcal{A},\mathcal{C})).$

- A description of A ⊗ B is obtained by seeing what a 2-functor F : B → Fun(A, C) is.
- One obtains "quasi-functor of two variables" H : A × B → C defined by relations among F(B)(A), A ∈ A, B ∈ B,

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category $\mathcal{A}\otimes\mathcal{B}$ s.t.:

 $2\operatorname{-Cat}(\mathcal{A}\otimes\mathcal{B},\mathcal{C})\cong 2\operatorname{-Cat}(\mathcal{B},\operatorname{Fun}(\mathcal{A},\mathcal{C})).$

- A description of A ⊗ B is obtained by seeing what a 2-functor F : B → Fun(A, C) is.
- One obtains "quasi-functor of two variables" H : A × B → C defined by relations among F(B)(A), A ∈ A, B ∈ B, and concludes the relations holding in A ⊗ B.

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category $\mathcal{A}\otimes\mathcal{B}$ s.t.:

 $2\operatorname{-Cat}(\mathcal{A}\otimes\mathcal{B},\mathcal{C})\cong 2\operatorname{-Cat}(\mathcal{B},\operatorname{Fun}(\mathcal{A},\mathcal{C})).$

- A description of A ⊗ B is obtained by seeing what a 2-functor F : B → Fun(A, C) is.
- One obtains "quasi-functor of two variables" H : A × B → C defined by relations among F(B)(A), A ∈ A, B ∈ B, and concludes the relations holding in A ⊗ B.

The relation that differs from what holds in the Cartesian product is:

$$(f \otimes B')(A \otimes g) \stackrel{\neq}{\Rightarrow} (A' \otimes g)(f \otimes B).$$

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category $\mathcal{A}\otimes\mathcal{B}$ s.t.:

 $2\operatorname{-Cat}(\mathcal{A}\otimes\mathcal{B},\mathcal{C})\cong 2\operatorname{-Cat}(\mathcal{B},\operatorname{Fun}(\mathcal{A},\mathcal{C})).$

- A description of A ⊗ B is obtained by seeing what a 2-functor F : B → Fun(A, C) is.
- One obtains "quasi-functor of two variables" H : A × B → C defined by relations among F(B)(A), A ∈ A, B ∈ B, and concludes the relations holding in A ⊗ B.

The relation that differs from what holds in the Cartesian product is:

$$(f \otimes B')(A \otimes g) \stackrel{\neq}{\Rightarrow} (A' \otimes g)(f \otimes B).$$

Gray proved that $\mathcal{A}\otimes\mathcal{B}$ yields a monoidal product on 2-Cat.

Gray tensor product for (strict-strict) double categories

In [G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in (Dbl_{st}^{st}, \otimes) is obtained from:

 $Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket).$

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in (Dbl_{st}^{st}, \otimes) is obtained from:

$$Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]).$$

In

[B. Femić: "Enrichment and internalization in tricategories, the case of tensor categories and alternative notion to intercategories"]:

• we characterized a double functor $F : \mathbb{A} \to \llbracket \mathbb{B}, \mathbb{C} \rrbracket$,

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in (Dbl_{st}^{st}, \otimes) is obtained from:

$$Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket).$$

In

[B. Femić: "Enrichment and internalization in tricategories, the case of tensor categories and alternative notion to intercategories"]:

- we characterized a double functor $F : \mathbb{A} \to [\![\mathbb{B}, \mathbb{C}]\!]$,
- we read off the structure of the double cat. $F(\mathbb{A})(\mathbb{B})$

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in (Dbl_{st}^{st}, \otimes) is obtained from:

$$Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]).$$

In

[B. Femić: "Enrichment and internalization in tricategories, the case of tensor categories and alternative notion to intercategories"]:

- we characterized a double functor $F : \mathbb{A} \to [\![\mathbb{B}, \mathbb{C}]\!]$,
- we read off the structure of the double cat. $F(\mathbb{A})(\mathbb{B})$
- and described $\mathbb{A} \otimes \mathbb{B}$ by relations.

Bifunctor Theorem for (lax-hop) double categories

[B. Femić: "Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define $[\![\mathbb{A}, \mathbb{B}]\!]$

- 0: lax double functors
- 1v: vertical lax transf. 1h: horizontal oplax transf.
 - modifications

[B. Femić: "Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define $\llbracket \mathbb{A}, \mathbb{B} \rrbracket$

- 0: lax double functors
- 1v: vertical lax transf. 1h: horizontal oplax transf.
 - modifications

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

▶ We characterized a lax double functor $F : \mathbb{A} \to [\![\mathbb{B}, \mathbb{C}]\!]$,

[B. Femić: "Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define $\llbracket \mathbb{A}, \mathbb{B} \rrbracket$

- 0: lax double functors
- 1v: vertical lax transf. 1h: horizontal oplax transf.
 - modifications

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

We characterized a lax double functor F : A → [[B, C]],
 got to the notion of *lax double quasi-functor* H : A × B → C,

[B. Femić: "Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define $\llbracket \mathbb{A}, \mathbb{B} \rrbracket$

- 0: lax double functors
- 1v: vertical lax transf. 1h: horizontal oplax transf.
 - modifications

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- ▶ We characterized a lax double functor $F : \mathbb{A} \to \llbracket \mathbb{B}, \mathbb{C} \rrbracket$,
- ▶ got to the notion of *lax double quasi-functor* $H : \mathbb{A} \times \mathbb{B} \to \mathbb{C}$,
- \blacktriangleright concluded the relations holding in $\mathbb{A}\otimes\mathbb{B}$,

[B. Femić: "Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define $\llbracket \mathbb{A}, \mathbb{B} \rrbracket$

- 0: lax double functors
- 1v: vertical lax transf. 1h: horizontal oplax transf.
 - modifications
- ▶ We characterized a lax double functor $F : \mathbb{A} \to [\mathbb{B}, \mathbb{C}]$,
- ▶ got to the notion of *lax double quasi-functor* $H : \mathbb{A} \times \mathbb{B} \to \mathbb{C}$,
- ▶ concluded the relations holding in $\mathbb{A} \otimes \mathbb{B}$,
- \blacktriangleright and proved that $-\otimes$ fulfills the monoidal product properties.

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q-Lax_{hop} $(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \stackrel{*}{\cong} Lax_{hop}(\mathbb{A}, [\mathbb{B}, \mathbb{C}])$.

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q-Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]$). Prop. 5.1 Isom. of 2-cats: q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A} \otimes \mathbb{B}, \mathbb{C}$).

Section 3: Isom. of 2-cats: q-Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]$). Prop. 5.1 Isom. of 2-cats: q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A} \otimes \mathbb{B}, \mathbb{C}$).

Consequently: $Lax_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Lax_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket)^{ns}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q-Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]$). Prop. 5.1 Isom. of 2-cats: q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A} \otimes \mathbb{B}, \mathbb{C}$).

Consequently: $Lax_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Lax_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket)^{ns}$.

Hence, there is a natural isomorphism of sets:

 $Dbl_{l_{x}}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{l_{x}}^{st}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket^{ns}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q-Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]$). Prop. 5.1 Isom. of 2-cats: q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A} \otimes \mathbb{B}, \mathbb{C}$).

Consequently: $Lax_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Lax_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket)^{ns}$.

Hence, there is a natural isomorphism of sets:

 $Dbl_{l_{x}}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{l_{x}}^{st}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket^{ns}).$

• $(Dbl_{l_{X}}^{st}, \otimes)$ is a closed monoidal category.

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } \mathcal{B}, g: C \to C' \text{ in } \mathcal{C}.$

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } \mathcal{B}, g: C \to C' \text{ in } \mathcal{C}.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f).$

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } \mathcal{B}, g: C \to C' \text{ in } \mathcal{C}.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f).$ [P.F. Faul, G. Manuell, J. Sigueira: "2-Dimensional Bifunctor Theorems and

[P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors

 $L_{\mathcal{C}}: \mathcal{B} \to \mathcal{D} \text{ and } M_{\mathcal{B}}: \mathcal{C} \to \mathcal{D} \ \forall \mathcal{B} \in \mathcal{B}, \mathcal{C} \in \mathcal{C}.$

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } \mathcal{B}, g: C \to C' \text{ in } \mathcal{C}.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f).$

[P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_{\mathcal{C}} : \mathcal{B} \to \mathcal{D}$ and $M_{\mathcal{B}} : \mathcal{C} \to \mathcal{D} \ \forall \mathcal{B} \in \mathcal{B}, \mathcal{C} \in \mathcal{C}$. Then there is a lax bifunctor $P : \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ with $P(\mathcal{B}, \mathcal{C}) = L_{\mathcal{C}}(\mathcal{B}) = M_{\mathcal{B}}(\mathcal{C}), \quad P(f, g) = M_{\mathcal{B}'}(g)L_{\mathcal{C}}(f)$ and $P(\alpha, \beta) = [L_{\mathcal{C}}(\alpha)|M_{\mathcal{B}'}(\beta)]$ on 0-,1- and 2-cells, resp.,

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } \mathcal{B}, g: C \to C' \text{ in } \mathcal{C}.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f).$

[P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_{\mathcal{C}} : \mathcal{B} \to \mathcal{D}$ and $M_{\mathcal{B}} : \mathcal{C} \to \mathcal{D} \forall \mathcal{B} \in \mathcal{B}, \mathcal{C} \in \mathcal{C}$. Then there is a lax bifunctor $P : \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ with $P(\mathcal{B}, \mathcal{C}) = L_{\mathcal{C}}(\mathcal{B}) = M_{\mathcal{B}}(\mathcal{C}), \quad P(f,g) = M_{\mathcal{B}'}(g)L_{\mathcal{C}}(f)$ and $P(\alpha, \beta) = [L_{\mathcal{C}}(\alpha)|M_{\mathcal{B}'}(\beta)]$ on 0-,1- and 2-cells, resp., with given compositor (in terms of σ) and unitor.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへぐ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } B, g: C \to C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f).$

[P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D} \forall B \in \mathcal{B}, C \in \mathcal{C}$. Then there is a lax bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ with $P(B, C) = L_C(B) = M_B(C), \quad P(f,g) = M_{B'}(g)L_C(f)$ and $P(\alpha, \beta) = [L_C(\alpha)|M_{B'}(\beta)]$ on 0-,1- and 2-cells, resp., with given compositor (in terms of σ) and unitor.

▶ 2-functor K : $\mathsf{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D}) \to \mathsf{Lax}_{op}(\mathcal{B} \times \mathcal{C}, \mathcal{D})$

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C: \mathcal{B} \to \mathcal{D}$ and $M_B: \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \to \mathcal{D} / L_C = P(-, C)$ and $M_B = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f: B \to B' \text{ in } \mathcal{B}, g: C \to C' \text{ in } \mathcal{C}.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f).$

[P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D} \ \forall B \in \mathcal{B}, C \in \mathcal{C}$. Then there is a lax bifunctor $P : \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ with $P(B, C) = L_C(B) = M_B(C), \quad P(f,g) = M_{B'}(g)L_C(f)$ and $P(\alpha, \beta) = [L_C(\alpha)|M_{B'}(\beta)]$ on 0-,1- and 2-cells, resp.,

with given compositor (in terms of σ) and unitor.

- ▶ 2-functor K : $\mathsf{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D}) \to \mathsf{Lax}_{op}(\mathcal{B} \times \mathcal{C}, \mathcal{D})$
- ► *K* restricts to a 2-equivalence.

Bifunctor Theorem: double categories

$$\mathcal{F}: q\text{-}\mathsf{Lax}^{ns}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \longrightarrow \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$$
$$H \mapsto (P, \gamma, \iota)$$

Bifunctor Theorem: double categories

$$\mathcal{F}: q\text{-}\mathsf{Lax}_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$$
$$H \mapsto (P, \gamma, \iota)$$

full sub-2-categories: $\begin{array}{l} q\text{-}\operatorname{Lax}_{hop}^{ns-u}(\mathbb{A}\times\mathbb{B},\mathbb{C})\text{: unital lax double quasi-functors (meaning that (-, A))} \\ \overline{\operatorname{and}(B, -) \text{ are unital, i.e. }} \iota^A, \iota^B \text{ invertible}) \\ \overline{\operatorname{Lax}_{hop}^{u-d}}(\mathbb{A}\times\mathbb{B},\mathbb{C})\text{: unital and decomposable lax double functors} \\ \overline{(\iota \text{ and } \gamma_{(1_A,g),(f,1_{B'})})} \text{ are invertible}). \end{array}$

Bifunctor Theorem: double categories

$$\mathcal{F}: q\text{-}\mathsf{Lax}_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$$
$$H \mapsto (P, \gamma, \iota)$$

full sub-2-categories: $\begin{array}{l} q\text{-}\operatorname{Lax}_{hop}^{ns-u}(\mathbb{A}\times\mathbb{B},\mathbb{C})\text{: unital lax double quasi-functors (meaning that (-, A))} \\ \hline and (B, -) are unital, i.e. \iota^A, \iota^B invertible) \\ \hline \operatorname{Lax}_{hop}^{u-d}(\mathbb{A}\times\mathbb{B},\mathbb{C})\text{: unital and decomposable lax double functors} \\ \hline \hline (\iota \text{ and } \gamma_{(1_A,g),(f,1_{B'})}) \text{ are invertible}). \end{array}$

 \mathcal{F} restricts to 2-equivalences:

$$\mathcal{F}':q\text{-}\mathsf{Lax}^{ns\text{-}u}_{hop}(\mathbb{A}\times\mathbb{B},\mathbb{C})\xrightarrow{\simeq}\mathsf{Lax}^{u\text{-}d}_{hop}(\mathbb{A}\times\mathbb{B},\mathbb{C}).$$

Bifunctor Theorem: double categories

$$\begin{aligned} \mathcal{F} : q\text{-}\mathsf{Lax}^{ns}_{hop}(\mathbb{A}\times\mathbb{B},\mathbb{C}) & \to \mathsf{Lax}_{hop}(\mathbb{A}\times\mathbb{B},\mathbb{C}) \\ H &\mapsto (P,\gamma,\iota) \end{aligned}$$

full sub-2-categories: $\begin{array}{l} q\text{-}\operatorname{Lax}_{hop}^{ns-u}(\mathbb{A}\times\mathbb{B},\mathbb{C})\text{: unital lax double quasi-functors (meaning that (-, A))} \\ \hline and (B, -) are unital, i.e. \iota^A, \iota^B invertible) \\ \hline \operatorname{Lax}_{hop}^{u-d}(\mathbb{A}\times\mathbb{B},\mathbb{C})\text{: unital and decomposable lax double functors} \\ \hline \hline (\iota \text{ and } \gamma_{(1_A,g),(f,1_{B'})}) \text{ are invertible}). \end{array}$

 \mathcal{F} restricts to 2-equivalences:

$$\mathcal{F}': q\operatorname{-}\mathsf{Lax}_{hop}^{ns-u}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \xrightarrow{\simeq} \mathsf{Lax}_{hop}^{u-d}(\mathbb{A} \times \mathbb{B}, \mathbb{C}).$$
$$\mathcal{F}'': q\operatorname{-}\mathsf{Ps}_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \xrightarrow{\simeq} \mathsf{Ps}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C}).$$

"(Un)currying" 2-functor

• q-Lax $_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \stackrel{*}{\cong} Lax_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket^{ns});$

"(Un)currying" 2-functor

• q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]^{ns}$); composing with \mathcal{F} yields an **uncurrying** 2-functor:

$$\mathsf{Lax}_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket^{ns}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$$

	Double category $Mnd(\mathbb{D})$		Bifunctor
000000	0000	0000	000000

Thm

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

"(Un)currying" 2-functor

• q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]^{ns}$); composing with \mathcal{F} yields an **uncurrying** 2-functor:

$$\mathsf{Lax}_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C}
rbracket^{ns}) o \mathsf{Lax}_{hop}(\mathbb{A} imes \mathbb{B}, \mathbb{C})$$

• q-Lax $_{hop}^{ns-u}(\mathbb{A}\times\mathbb{B},\mathbb{C})\cong Lax_{hop}^{u}(\mathbb{A},[\![\mathbb{B},\mathbb{C}]\!]^{ns-u});$

Double categori	es Double category Mnd(₪)) Gray tensor product on double cats	Bifunctor Thm
000000	0000	0000	00000●0

"(Un)currying" 2-functor

• q-Lax^{ns}_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax_{hop}($\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]^{ns}$); composing with \mathcal{F} yields an **uncurrying** 2-functor:

$$\mathsf{Lax}_{hop}(\mathbb{A}, \llbracket \mathbb{B}, \mathbb{C} \rrbracket^{ns}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$$

q-Lax^{ns-u}_{hop}(A × B, C) ≅ Lax^u_{hop}(A, [B, C]^{ns-u});
 composing with *F*' one gets a currying 2-functor which is a 2-equivalence:

$$\mathsf{Lax}^{u^{-d}}_{hop}(\mathbb{A}\times\mathbb{B},\mathbb{C})\simeq\mathsf{Lax}^{u}_{hop}(\mathbb{A},\llbracket\mathbb{B},\mathbb{C}\rrbracket^{n^{s^{-u}}})$$

Application to monads in double categories

The followong are straightforward:

• A lax double functor $* \to \mathbb{D}$ is a monad in \mathbb{D} .

Application to monads in double categories

The followong are straightforward:

- A lax double functor $* \to \mathbb{D}$ is a monad in \mathbb{D} .
- There are 2-category isomorphisms:

 $\mathsf{Lax}_{hop}(*,\mathbb{D})\cong\mathsf{Mnd}(\mathcal{H}(\mathbb{D}))$

Application to monads in double categories

The followong are straightforward:

- A lax double functor $* \to \mathbb{D}$ is a monad in \mathbb{D} .
- There are 2-category isomorphisms:

 $\mathsf{Lax}_{hop}(*,\mathbb{D})\cong\mathsf{Mnd}(\mathcal{H}(\mathbb{D}))$

$$q$$
-Lax_{hop} $(* \times *, \mathbb{D}) \cong Mnd(Mnd(\mathcal{H}(\mathbb{D}))).$

Application to monads in double categories

The followong are straightforward:

- A lax double functor $* \to \mathbb{D}$ is a monad in \mathbb{D} .
- There are 2-category isomorphisms:

 $\mathsf{Lax}_{hop}(*,\mathbb{D})\cong\mathsf{Mnd}(\mathcal{H}(\mathbb{D}))$

$$q$$
-Lax_{hop}(* × *, \mathbb{D}) \cong Mnd(Mnd($\mathcal{H}(\mathbb{D})$)).

Bifunctor Theorem as a generalization of Beck's result on the composition of monads:

$$\begin{array}{ccc} q \text{-} \operatorname{Lax}_{hop}(* \times *, \mathbb{D}) & \xrightarrow{\mathcal{F}} & \operatorname{Lax}_{hop}(*, \mathbb{D}) \\ \cong & & \downarrow & \downarrow \cong \\ \operatorname{Mnd}(\operatorname{Mnd}(\mathcal{H}(\mathbb{D}))) & \xrightarrow{\operatorname{Comp}(\mathcal{H}(\mathbb{D}))} & \operatorname{Mnd}(\mathcal{H}(\mathbb{D})) \end{array}$$