

Gray-type monoidal product and Bifunctor Theorem for double categories

Bojana Femić

Virtual Double Categories Workshop

The speaker was supported by the Science Fund of the Republic of Serbia, Grant No. 7749891, Graphical Languages - GWORDS

29 November 2022

Mathematical Institute of Serbian Academy of Sciences and Arts Belgrade (Serbia)

KOD KAR KED KED DRA

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 「할 → 9 Q @

Overview of the talk

Introductory part:

 \triangleright double categories (as specific internal categories)

KORK EX KEY A BY A GRA

Overview of the talk

Introductory part:

- \triangleright double categories (as specific internal categories)
- \blacktriangleright double category of monads (why "vertical morphisms" of monads are useful)

Overview of the talk

Introductory part:

- \triangleright double categories (as specific internal categories)
- \blacktriangleright double category of monads (why "vertical morphisms" of monads are useful)

Gray-type tensor product on double categories

 \triangleright Gray-type tensor product on (strict-strict) double categories

KORK EX KEY A BY A GRA

Overview of the talk

Introductory part:

- \triangleright double categories (as specific internal categories)
- \blacktriangleright double category of monads (why "vertical morphisms" of monads are useful)

Gray-type tensor product on double categories

 \triangleright Gray-type tensor product on (strict-strict) double categories

KORK EX KEY A BY A GRA

Bifunctor Theorem for (lax-hop) double categories

Overview of the talk

Introductory part:

- \triangleright double categories (as specific internal categories)
- \triangleright double category of monads (why "vertical morphisms" of monads are useful)

Gray-type tensor product on double categories

- ▶ Gray-type tensor product on (strict-strict) double categories
- Bifunctor Theorem for (lax-hop) double categories
	- \triangleright Gray-type tensor product on (strict-lax) double categories

KORK EX KEY A BY A GRA

- ▶ Bifunctor Theorem
- \blacktriangleright "(Un)currying 2-functors
- \triangleright application to monads in double categories

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Double categories

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Double categories

Bicategory: • 0-cells

-
- 1-cells
- 2-cells

Double categories

Bicategory: • 0-cells

-
- 1-cells
- 2-cells

Double category:

- 0-cells
- vertical 1-cells horizontal 1-cells
	- squares (2-cells)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 「할 → 9 Q @

A double category is an internal category in the category Cat_1 .

A double category is an internal category in the category Cat_1 .

There are: \bullet categories C_0 , C_1 (0-cells in Cat₁)

A **double category** is an internal category in the category Cat_1 .

There are: \bullet categories C_0 , C_1 (0-cells in Cat₁)

KORK ERKER ADAM ADA

- functors (1-cells in $Cat₁$)
- $s, t : C_1 \to C_0$, $u : C_0 \to C_1$ and $c : C_1 \times_{C_0} C_1 \to C_1$

Double category as internal category

A **double category** is an internal category in the category Cat_1 .

- There are: \bullet categories C_0 , C_1 (0-cells in Cat₁)
	- functors (1-cells in Cat_1)
- $s, t : C_1 \to C_0$, $u : C_0 \to C_1$ and $c : C_1 \times_{C_0} C_1 \to C_1$ s.t. \bullet *c* is associative and unital.

A **double category** is an internal category in the category Cat_1 .

- There are: \bullet categories C_0 , C_1 (0-cells in Cat₁) • functors (1-cells in Cat_1)
- $s, t : C_1 \to C_0$, $u : C_0 \to C_1$ and $c : C_1 \times_{C_0} C_1 \to C_1$
- s.t. \bullet c is associative and unital.
	- α 0-cells

- - squares (2-cells)

 $A \xrightarrow{f} B$

 $\prime \stackrel{g}{\longrightarrow} B'$ g

KORK EX KEY A BY A GRA

k. v

A

| z
|

A **double category** is an internal category in the category Cat_1 .

There are: \bullet categories C_0 , C_1 (0-cells in Cat₁) • functors (1-cells in Cat_1) $s, t : C_1 \to C_0$, $u : C_0 \to C_1$ and $c : C_1 \times_{C_0} C_1 \to C_1$ s.t. $\qquad \qquad \bullet$ c is associative and unital. $A \xrightarrow{f} B$ $v \leftarrow \frac{\alpha}{\alpha} \leftarrow z$ A $\prime \stackrel{g}{\longrightarrow} B'$ • 0-cells $v\left|\begin{array}{ccc} \hline \alpha \end{array}\right|$ • vertical 1-cells • horizontal 1-cells • squares (2-cells)

 C_0 : 0-cells and 1v-cells, C_1 : 1h-cells and 2-cells.

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat2.

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat2.

(an internal category in $Cat₂$)

KORK EX KEY A BY A GRA

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat₂.

(an internal category in Cat_2)

There are:

\n- categories
$$
C_0
$$
, C_1 (0-cells in Cat₂)
\n- functors $(1$ -cells in Cat₂)
\n

 $s, t : C_1 \rightarrow C_0$, $u : C_0 \rightarrow C_1$ and $c : C_1 \times_{C_0} C_1 \rightarrow C_1$

KORK EX KEY A BY A GRA

Pseudodouble category as internal category

A pseudodouble category is a

pseudocategory internal in the 2-category Cat2.

(an internal category in $Cat₂$)

There are:

\n- categories
$$
C_0
$$
, C_1 (0-cells in Cat₂)
\n- functors $(1$ -cells in Cat₂)
\n- C_0 and C_1 for C_2 and C_3 for C_1 and C_2 for C_1 and C_2 are the same as follows:
\n

$$
s, t: C_1 \to C_0
$$
, $u: C_0 \to C_1$ and $c: C_1 \times_{C_0} C_1 \to C_1$

• natural transformations (2-cells in
$$
Cat2
$$
)

$$
\alpha: c\otimes (id_{C_1}\times_{C_0} c)\Rightarrow c\otimes (c\times_{C_0} id_{C_1})
$$

$$
\lambda: c\otimes (u\times_{C_0} id_{C_1})\Rightarrow id_{C_1}
$$

$$
\rho: c \otimes (id_{C_1} \times_{C_0} u) \Rightarrow id_{C_1}
$$

which satisfy a pentagon and a triangle.

Bicategories and pseudodouble categories

A **bicategory** known to everyone:

0: algebras $A, B..., \quad 1: A-B$ -bimodules, 2: bimodule morphisms.

Bicategories and pseudodouble categories

A **bicategory** known to everyone: 0: algebras A, B..., 1: A-B-bimodules, 2: bimodule morphisms.

Pseudodouble category:

- \bullet 0: algebras A, B
- 1 $v:$ alg. morphisms 1h: A-B-bimodules
	- 2: bimodule morphisms

KORK EX KEY A BY A GRA

Bicategories and pseudodouble categories

A **bicategory** known to everyone: 0: algebras A, B..., 1: A-B-bimodules, 2: bimodule morphisms.

Pseudodouble category:

- \bullet 0: algebras A, B
- 1 $v:$ alg. morphisms 1h: A-B-bimodules
	- 2: bimodule morphisms

KORK EX KEY A BY A GRA

 $\alpha : M \rightarrow N$ A-B-bimodule morphism $a \cdot n \cdot b := g(a) \cdot n \cdot f(b)$

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory:

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities,

KORK EX KEY A BY A GRA

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

K ロ ▶ K 리 ▶ K 로 ▶ K 로 ▶ 『 콘 · 이익C

 $=\begin{vmatrix} & & \end{vmatrix}$ $A \xrightarrow{0} B$ \mathcal{g}

KORK EXKEY EL SORA

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells". $A \xrightarrow{f} B$

(This is the *horizontal bicategory* $\mathcal{H}(\mathbb{D})$ of the pseudodouble category \mathbb{D} .)

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

(This is the *horizontal bicategory* $\mathcal{H}(\mathbb{D})$ of the pseudodouble category \mathbb{D} .)

Each bicategory can be embedded into a pseudodouble category.

KORK EXKEY EL SORA

Bicategories and pseudodouble categories

In every pseudodouble category there is a bicategory: for vertical morphisms take only identities, and correspondingly "globular 2-cells".

(This is the *horizontal bicategory* $\mathcal{H}(\mathbb{D})$ of the pseudodouble category \mathbb{D} .)

- Each bicategory can be embedded into a pseudodouble category.
- Every pseudodouble category is double-equivalent to a double category [Grandis-Paré: "Limits in double categories" (1999)].

KORK EXKEY EL SORA

Functors of double categories

- \blacktriangleright (strict) double functors,
- pseudo double functors,
- (co)lax double functors.

Why the 2-category $Mnd(\mathcal{K})$ of 2-monads isn't enough

KOD KAP KED KED E VOQO

The 2-category Mnd(K) of monads in K

0-cells:

2-monads $(\mathcal{A}, \mathcal{T} : \mathcal{A} \to \mathcal{A}, \mu_{\mathcal{T}} : \mathcal{T}\mathcal{T} \to \mathcal{T}, \eta_{\mathcal{T}} : \mathsf{Id}_\mathcal{A} \to \mathcal{T})$

<u>1-cells:</u> pairs $(X,\psi): (\mathcal A, \mathcal T)\to (\mathcal A', \mathcal T')$ where $X: \mathcal A \to \mathcal A'$ is a 1-cell and $\psi: T^{\prime}X \Rightarrow XT$ a 2-cell s.t.

<u>2-cells:</u> $(X, \psi) \Rightarrow (Y, \psi')$ are given by 2-cells $\zeta : X \to Y$ in $\mathcal K$ satisfying:

$$
\frac{\frac{T'X}{\psi}}{\frac{|\zeta|}{X T}} = \frac{\frac{T'X}{|\zeta|}}{\frac{|\psi'|}{W T}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 「할 → 9 Q @

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects) are monads in $Span(V)$ (resp. in $Span_d(V)$)
KORK EXKEY EL SORA

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

- internal categories (with a discrete object of objects) are monads in $Span(V)$ (resp. in $Span_d(V)$)
- \bullet enriched categories are monads in V -Mat.

KORKA SERKER ORA

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as monads in appropriate bicategories.

However, morphisms between them are not monad maps.

- internal categories (with a discrete object of objects) are monads in $Span(V)$ (resp. in $Span_d(V)$)
- enriched categories are monads in V -*Mat*.

BUT:

• monad morphisms between monads on the bicategories $Span_d(V)$ and V -Mat are not functors of categories internal in V , resp. of categories enriched over V .

KORK EXKEY EL SORA

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** Mnd (\mathbb{D}) of monads:

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** Mnd (\mathbb{D}) of monads:

- (double) monads
-
- vertical monad maps horizontal monad maps
	- squares (2-cells)

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** Mnd (\mathbb{D}) of monads:

- (double) monads
-
- vertical monad maps horizontal monad maps
	- squares (2-cells)

KORK EXKEY EL SORA

This allows to describe mathematical structures and morphisms between them

The double category $Mnd(\mathbb{D})$ of (double) monads

To address this issue [Fiore, Gambino, Kock: "Monads in double categories" (2010)] defined the **double category** Mnd (\mathbb{D}) of monads:

- (double) monads
-
- vertical monad maps horizontal monad maps
	- squares (2-cells)

KORKA SERKER ORA

This allows to describe mathematical structures and morphisms between them as monads and vertical monad maps in appropriate double categories.

[Double categories](#page-6-0) [Double category Mnd\(](#page-30-0)D) [Gray tensor product on double cats](#page-45-0) [Bifunctor Thm](#page-63-0)

The double category $Mnd(\mathbb{D})$ of (double) monads

1v-cells:

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 2990 ÷

[Double categories](#page-6-0) [Double category Mnd\(](#page-30-0)D) [Gray tensor product on double cats](#page-45-0) [Bifunctor Thm](#page-63-0)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990

 \equiv

The double category $Mnd(\mathbb{D})$ of (double) monads

1v-cells:

 \Rightarrow 1v-cells in Mnd(Span(V)) are internal functors in V

[Double categories](#page-6-0) [Double category Mnd\(](#page-30-0)D) [Gray tensor product on double cats](#page-45-0) [Bifunctor Thm](#page-63-0)

 Ω

The double category $Mnd(\mathbb{D})$ of (double) monads

1v-cells:

 \Rightarrow 1v-cells in Mnd(Span(V)) are internal functors in V \Rightarrow 1v-cells in Mnd(V - Mat) are V-enriched funct[or](#page-43-0)s[.](#page-45-0)

KORK ERKER ADAM ADA

Gray tensor product on double categories

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Gray tensor product

Gray tensor product gives a (left and right) closed monoidal structure on a category:

Gray tensor product gives a (left and right) closed monoidal structure on a category:

$$
\mathcal{C}(X\otimes Y,Z)\cong \mathcal{C}(Y,[X,Z])
$$

KOD KAR KED KED DRA

isomorphism natural in $X, Y, Z \in \mathcal{C}$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

Gray tensor product gives a (left and right) closed monoidal structure on a category:

$$
\mathcal{C}(X\otimes Y,Z)\cong \mathcal{C}(Y,[X,Z])
$$

isomorphism natural in $X, Y, Z \in \mathcal{C}$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

IF There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

KORKA SERKER ORA

Gray tensor product gives a (left and right) closed monoidal structure on a category:

$$
\mathcal{C}(X\otimes Y,Z)\cong \mathcal{C}(Y,[X,Z])
$$

isomorphism natural in $X, Y, Z \in \mathcal{C}$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

IF There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

When $C = 2$ -Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun (A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications).

KORKA SERKER ORA

Gray tensor product gives a (left and right) closed monoidal structure on a category:

$$
\mathcal{C}(X\otimes Y,Z)\cong \mathcal{C}(Y,[X,Z])
$$

isomorphism natural in $X, Y, Z \in \mathcal{C}$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

IF There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

When $C = 2$ -Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun (A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications). BUT:

KORKAR KERKER SAGA

the composition $c : Fun(\mathcal{B}, \mathcal{C}) \times Fun(\mathcal{A}, \mathcal{B}) \rightarrow Fun(\mathcal{A}, \mathcal{C})$ isn't a 2-functor:

Gray tensor product gives a (left and right) closed monoidal structure on a category:

$$
\mathcal{C}(X\otimes Y,Z)\cong \mathcal{C}(Y,[X,Z])
$$

isomorphism natural in $X, Y, Z \in \mathcal{C}$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

IF There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

When $C = 2$ -Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun (A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications). BUT:

the composition $c : Fun(\mathcal{B}, \mathcal{C}) \times Fun(\mathcal{A}, \mathcal{B}) \rightarrow Fun(\mathcal{A}, \mathcal{C})$ isn't a 2-functor: although 1-cells (lax transformations) compose nicely, the 2-functor condition on them for c translates into the "interchange law": $\frac{\beta}{\beta'} \circ \frac{\alpha}{\alpha'} = \frac{\beta \circ \alpha}{\beta' \circ \alpha'}$

Gray tensor product gives a (left and right) closed monoidal structure on a category:

$$
\mathcal{C}(X\otimes Y,Z)\cong \mathcal{C}(Y,[X,Z])
$$

isomorphism natural in $X, Y, Z \in \mathcal{C}$, and $(X \otimes -, [X, -])$ is an adjoint pair of endofunctors on C.

IF There is composition: $[B, C] \times [A, B] \rightarrow [A, C]$, a morphism in C defined via ev's.

When $C = 2$ -Cat (2-categories and 2-functors), the natural candidate for an inner hom is the 2-category Fun (A, B) for 2-categories A, B (2-functors, lax natural transformations, modifications). BUT:

the composition $c : Fun(\mathcal{B}, \mathcal{C}) \times Fun(\mathcal{A}, \mathcal{B}) \rightarrow Fun(\mathcal{A}, \mathcal{C})$ isn't a 2-functor: although 1-cells (lax transformations) compose nicely, the 2-functor condition on them for c translates into the "interchange law": $\frac{\beta}{\beta'} \circ \frac{\alpha}{\alpha'} = \frac{\beta \circ \alpha}{\beta' \circ \alpha'}$ and the interchange does not hold in general on lax transformations (strictness of transformations is needed).**KORKAR KERKER DRA**

One looks for a 2-category $\mathcal{A} \otimes \mathcal{B}$ s.t.:

2-Cat $(A \otimes B, C) \cong$ 2-Cat $(B, Fun(A, C)).$

One looks for a 2-category $\mathcal{A} \otimes \mathcal{B}$ s.t.:

2-Cat($\mathcal{A} \otimes \mathcal{B}, \mathcal{C}$) ≅ 2-Cat(\mathcal{B} , Fun(\mathcal{A}, \mathcal{C})).

KORKA SERKER ORA

▶ A description of $A \otimes B$ is obtained by seeing what a 2-functor $F : \mathcal{B} \longrightarrow \text{Fun}(\mathcal{A}, \mathcal{C})$ is.

One looks for a 2-category $\mathcal{A} \otimes \mathcal{B}$ s.t.:

2-Cat($\mathcal{A} \otimes \mathcal{B}, \mathcal{C}$) ≅ 2-Cat(\mathcal{B} , Fun(\mathcal{A}, \mathcal{C})).

- ▶ A description of $A \otimes B$ is obtained by seeing what a 2-functor $F : \mathcal{B} \longrightarrow \text{Fun}(\mathcal{A}, \mathcal{C})$ is.
- ▶ One obtains "quasi-functor of two variables" $H : \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ defined by relations among $F(B)(A)$, $A \in \mathcal{A}, B \in \mathcal{B}$,

One looks for a 2-category $\mathcal{A} \otimes \mathcal{B}$ s.t.:

2-Cat($\mathcal{A} \otimes \mathcal{B}, \mathcal{C}$) ≅ 2-Cat(\mathcal{B} , Fun(\mathcal{A}, \mathcal{C})).

- ▶ A description of $A \otimes B$ is obtained by seeing what a 2-functor $F : \mathcal{B} \longrightarrow \text{Fun}(\mathcal{A}, \mathcal{C})$ is.
- ▶ One obtains "quasi-functor of two variables" $H : \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ defined by relations among $F(B)(A)$, $A \in \mathcal{A}, B \in \mathcal{B}$, and concludes the relations holding in $A \otimes B$.

One looks for a 2-category $\mathcal{A} \otimes \mathcal{B}$ s.t.:

2-Cat($\mathcal{A} \otimes \mathcal{B}, \mathcal{C}$) ≅ 2-Cat(\mathcal{B} , Fun(\mathcal{A}, \mathcal{C})).

- ▶ A description of $A \otimes B$ is obtained by seeing what a 2-functor $F : \mathcal{B} \longrightarrow \text{Fun}(\mathcal{A}, \mathcal{C})$ is.
- ▶ One obtains "quasi-functor of two variables" $H : \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ defined by relations among $F(B)(A)$, $A \in \mathcal{A}, B \in \mathcal{B}$, and concludes the relations holding in $A \otimes B$.

The relation that differs from what holds in the Cartesian product is:

$$
(f\otimes B')(A\otimes g)\stackrel{\neq}{\Rightarrow}(A'\otimes g)(f\otimes B).
$$

One looks for a 2-category $\mathcal{A} \otimes \mathcal{B}$ s.t.:

2-Cat $(A \otimes B, C) \cong$ 2-Cat $(B, Fun(A, C)).$

- ▶ A description of $A \otimes B$ is obtained by seeing what a 2-functor $F : \mathcal{B} \longrightarrow \text{Fun}(\mathcal{A}, \mathcal{C})$ is.
- ▶ One obtains "quasi-functor of two variables" $H : \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ defined by relations among $F(B)(A)$, $A \in \mathcal{A}, B \in \mathcal{B}$, and concludes the relations holding in $A \otimes B$.

The relation that differs from what holds in the Cartesian product is:

$$
(f \otimes B')(A \otimes g) \stackrel{\neq}{\Rightarrow} (A' \otimes g)(f \otimes B).
$$

Gray proved that $A \otimes B$ yields a monoidal product on 2-Cat.

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in $(\mathit{Dbl}_{\mathit{st}}^{ \mathit{st} },\otimes)$ is obtained from:

 $\mathsf{Dbl}^{\mathsf{st}}_{\mathsf{st}}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong \mathsf{Dbl}^{\mathsf{st}}_{\mathsf{st}}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]).$

KOD KARD KED KED E YOUN

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in $(\mathit{Dbl}_{\mathit{st}}^{ \mathit{st} },\otimes)$ is obtained from:

$$
Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]).
$$

In

[B. Femić: "Enrichment and internalization in tricategories, the case of tensor categories and alternative notion to intercategories"]:

we characterized a double functor $F : \mathbb{A} \to [\mathbb{B}, \mathbb{C}],$

KOD KARD KED KED E YOUN

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in $(\mathit{Dbl}_{\mathit{st}}^{ \mathit{st} },\otimes)$ is obtained from:

$$
Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]).
$$

In

[B. Femić: "Enrichment and internalization in tricategories, the case of tensor categories and alternative notion to intercategories"]:

- we characterized a double functor $F : \mathbb{A} \to \mathbb{B}, \mathbb{C}$,
- we read off the structure of the double cat. $F(\mathbb{A})(\mathbb{B})$

KORK EXKEY EL SORA

Gray tensor product for (strict-strict) double categories

In

[G. Böhm: "The Gray Monoidal Product of Double Categories" (2020)] monoidal structure in $(\mathit{Dbl}_{\mathit{st}}^{ \mathit{st} },\otimes)$ is obtained from:

$$
Dbl_{st}^{st}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong Dbl_{st}^{st}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]).
$$

In

[B. Femić: "Enrichment and internalization in tricategories, the case of tensor categories and alternative notion to intercategories"]:

- we characterized a double functor $F : \mathbb{A} \to \mathbb{B}, \mathbb{C}$,
- we read off the structure of the double cat. $F(\mathbb{A})(\mathbb{B})$
- and described $\mathbb{A} \otimes \mathbb{B}$ by relations.

KORK ERKER ADAM ADA

Bifunctor Theorem for (lax-hop) double categories

[B. Femić: " Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define $[\![\mathbb{A},\mathbb{B}]\!]$

- 0: lax double functors
- 1v: vertical lax transf. 1h: horizontal oplax transf.
	- modifications

[B. Femić: " Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define \mathbb{A}, \mathbb{B}

- 0: lax double functors
- 1 v : vertical lax transf. 1h: horizontal oplax transf.
	- modifications

KORK EXKEY EL SORA

We characterized a lax double functor $F : \mathbb{A} \to \mathbb{B}, \mathbb{C}$,

[B. Femić: " Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define \mathbb{A}, \mathbb{B}

- 0: lax double functors
- 1 v : vertical lax transf. 1h: horizontal oplax transf.
	- modifications

KORK EXKEY EL SORA

 \triangleright We characterized a lax double functor $F: \mathbb{A} \to \mathbb{B}, \mathbb{C}$, got to the notion of *lax double quasi-functor* $H : A \times B \rightarrow \mathbb{C}$,

[B. Femić: " Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define \mathbb{A}, \mathbb{B}

- 0: lax double functors
- 1 v : vertical lax transf. 1h: horizontal oplax transf.
	- modifications

- \triangleright We characterized a lax double functor $F: \mathbb{A} \to \mathbb{B}, \mathbb{C}$,
- got to the notion of *lax double quasi-functor* $H : A \times B \rightarrow \mathbb{C}$,
- concluded the relations holding in $\mathbb{A} \otimes \mathbb{B}$,

[B. Femić: " Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors"]

We define \mathbb{A}, \mathbb{B}

- 0: lax double functors
- 1 v : vertical lax transf. 1h: horizontal oplax transf.
	- modifications
- \triangleright We characterized a lax double functor $F: \mathbb{A} \to \mathbb{B}, \mathbb{C}$,
- got to the notion of *lax double quasi-functor* $H : A \times B \rightarrow \mathbb{C}$,
- concluded the relations holding in $\mathbb{A} \otimes \mathbb{B}$,
- and proved that $-\otimes -$ fulfills the monoidal product properties.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q - Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\mathbb{B}, \mathbb{C}]]$).

KORK EXKEY EL SORA

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q - Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\mathbb{B}, \mathbb{C}]]$). Prop. 5.1 Isom. of 2-cats: q - Lax $_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \cong \text{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C})$.

Section 3: Isom. of 2-cats: q - Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\mathbb{B}, \mathbb{C}]]$). Prop. 5.1 Isom. of 2-cats: q - Lax $_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \cong \text{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C})$.

Consequently: $\mathsf{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong \mathsf{Lax}_{hop}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]^{ns}).$

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q - Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\mathbb{B}, \mathbb{C}]]$). Prop. 5.1 Isom. of 2-cats: q - Lax $_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \cong \text{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C})$.

Consequently: $\mathsf{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong \mathsf{Lax}_{hop}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]^{ns}).$

Hence, there is a natural isomorphism of sets:

 $\mathit{Dbl}_k^{\mathsf{st}}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong \mathit{Dbl}_k^{\mathsf{st}}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]^{ns}).$

KORKA SERKER ORA

The Gray tensor product on (strict-lax) double categories

Section 3: Isom. of 2-cats: q - Lax_{hop}($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) $\stackrel{*}{\cong}$ Lax_{hop}($\mathbb{A}, [\mathbb{B}, \mathbb{C}]]$). Prop. 5.1 Isom. of 2-cats: q - Lax $_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \cong \text{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C})$.

Consequently: $\mathsf{Lax}_{hop}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong \mathsf{Lax}_{hop}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]^{ns}).$

Hence, there is a natural isomorphism of sets:

 $\mathit{Dbl}_k^{\mathsf{st}}(\mathbb{A} \otimes \mathbb{B}, \mathbb{C}) \cong \mathit{Dbl}_k^{\mathsf{st}}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]^{ns}).$

 \bullet $\left(\textit{Dbl}_{\textit{lx}}^{\textit{st}},\otimes\right)$ is a closed monoidal category.

KORK ERKER ADAM ADA

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : C \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{D}$ / $L_{\mathcal{C}} = P(-, C)$ and $M_{\mathcal{B}} = P(B, -)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$

KORK EXKEY EL SORA

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : C \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P:\mathcal{B}\times\mathcal{C}\rightarrow\mathcal{D}$ / $L_{\mathcal{C}}=P(-,C)$ and $M_{\mathcal{B}}=P(B,-)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f)$.

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P:\mathcal{B}\times\mathcal{C}\rightarrow\mathcal{D}$ / $L_{\mathcal{C}}=P(-,C)$ and $M_{\mathcal{B}}=P(B,-)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f)$. [P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors

 $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D} \ \forall B \in \mathcal{B}, C \in \mathcal{C}$.

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : C \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P:\mathcal{B}\times\mathcal{C}\rightarrow\mathcal{D}$ / $L_{\mathcal{C}}=P(-,C)$ and $M_{\mathcal{B}}=P(B,-)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f)$. [P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)]

Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D} \ \forall B \in \mathcal{B}, C \in \mathcal{C}$. Then there is a lax bifunctor $P: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{D}$ with $P(B, C) = L_C(B) = M_B(C), P(f, g) = M_{B'}(g)L_C(f)$ and $P(\alpha, \beta) = [L_C(\alpha)|M_{B'}(\beta)]$ on 0-,1- and 2-cells, resp.,

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : C \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P:\mathcal{B}\times\mathcal{C}\rightarrow\mathcal{D}$ / $L_{\mathcal{C}}=P(-,C)$ and $M_{\mathcal{B}}=P(B,-)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f)$. [P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)]

Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D} \ \forall B \in \mathcal{B}$, $C \in \mathcal{C}$. Then there is a lax bifunctor $P: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{D}$ with $P(B, C) = L_C(B) = M_B(C), P(f, g) = M_{B'}(g)L_C(f)$ and $P(\alpha, \beta) = [L_C(\alpha)|M_{B'}(\beta)]$ on 0-,1- and 2-cells, resp., with given compositor (in terms of σ) and unitor.

KORK EXKEY EL SORA

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : C \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P:\mathcal{B}\times\mathcal{C}\rightarrow\mathcal{D}$ / $L_{\mathcal{C}}=P(-,C)$ and $M_{\mathcal{B}}=P(B,-)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f)$. [P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)]

Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D} \ \forall B \in \mathcal{B}$, $C \in \mathcal{C}$. Then there is a lax bifunctor $P: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{D}$ with $P(B, C) = L_C(B) = M_B(C), P(f, g) = M_{B'}(g)L_C(f)$ and $P(\alpha, \beta) = [L_C(\alpha)|M_{B'}(\beta)]$ on 0-,1- and 2-cells, resp.,

with given compositor (in terms of σ) and unitor.

 \triangleright 2-functor K : Dist($\mathcal{B}, \mathcal{C}, \mathcal{D}$) → Lax_{op}($\mathcal{B} \times \mathcal{C}, \mathcal{D}$)

KORKA SERKER ORA

Bifunctor Theorem: 1- and 2-categories

[MacLane:]

Given functors $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : C \to \mathcal{D}$ so that $L_C(B) = M_B(C), \forall B \in \mathcal{B}, C \in \mathcal{C}.$ Then \exists a bifunctor $P:\mathcal{B}\times\mathcal{C}\rightarrow\mathcal{D}$ / $L_{\mathcal{C}}=P(-,C)$ and $M_{\mathcal{B}}=P(B,-)$ $\iff L_{C'}(f)M_B(g) = M_{B'}(g)L_C(f), \forall f : B \rightarrow B' \text{ in } B, g : C \rightarrow C' \text{ in } C.$ In this case, $P(B, C) = L_C(B) = M_B(C)$ and $P(f, g) = M_{B'}(g)L_C(f)$. [P.F. Faul, G. Manuell, J. Siqueira: "2-Dimensional Bifunctor Theorems and Distributive laws", (2021)] Let $\sigma \in \text{Dist}(\mathcal{B}, \mathcal{C}, \mathcal{D})$ be a distributive law between families of lax functors

 $L_C : \mathcal{B} \to \mathcal{D}$ and $M_B : \mathcal{C} \to \mathcal{D} \ \forall B \in \mathcal{B}$, $C \in \mathcal{C}$. Then there is a lax bifunctor $P: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{D}$ with

 $P(B, C) = L_C(B) = M_B(C), P(f, g) = M_{B'}(g)L_C(f)$ and

 $P(\alpha, \beta) = [L_C(\alpha)|M_{B'}(\beta)]$ on 0-,1- and 2-cells, resp.,

with given compositor (in terms of σ) and unitor.

- ▶ 2-functor $K : Dist(B, C, D) \longrightarrow Lax_{op}(\mathcal{B} \times \mathcal{C}, \mathcal{D})$
- K restricts to a 2-equivalence.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Bifunctor Theorem: double categories

$$
\mathcal{F}: q\text{-}\text{Lax}_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \to \text{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

$$
H \mapsto (P, \gamma, \iota)
$$

Bifunctor Theorem: double categories

$$
\mathcal{F}: q\text{-} \mathsf{Lax}_{\mathsf{hop}}^{\mathsf{ns}}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \to \mathsf{Lax}_{\mathsf{hop}}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

$$
H \mapsto (P, \gamma, \iota)
$$

full sub-2-categories: q - Lax $_{hop}^{ns-u}$ ($\mathbb{A} \times \mathbb{B}, \mathbb{C}$): *unital* lax double quasi-functors (meaning that $(-, A)$ and $(B,-)$ are unital, i.e. $\iota^{\mathcal{A}},\iota^{\mathcal{B}}$ invertible) $\mathsf{Lax}_{hop}^{u-d}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$: unital and decomposable lax double functors $\overline{u$ and $\gamma_{(1_A,g),(f,1_B)}$ are invertible).

Bifunctor Theorem: double categories

$$
\mathcal{F}: q\text{-} \mathsf{Lax}_{\mathsf{hop}}^{\mathsf{ns}}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \to \mathsf{Lax}_{\mathsf{hop}}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

$$
H \mapsto (P, \gamma, \iota)
$$

full sub-2-categories: q - Lax $_{hop}^{ns-u}$ ($\mathbb{A} \times \mathbb{B}, \mathbb{C}$): *unital* lax double quasi-functors (meaning that $(-, A)$ and $(B,-)$ are unital, i.e. $\iota^{\mathcal{A}},\iota^{\mathcal{B}}$ invertible) $\mathsf{Lax}_{hop}^{u-d}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$: unital and decomposable lax double functors $\overline{u$ and $\gamma_{(1_A,g),(f,1_B)}$ are invertible).

 F restricts to 2-equivalences:

$$
\mathcal{F}': q\text{-}\text{Lax}_{hop}^{ns-u}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \stackrel{\simeq}{\rightarrow} \text{Lax}_{hop}^{u-d}(\mathbb{A} \times \mathbb{B}, \mathbb{C}).
$$

 2990

∍

Bifunctor Theorem: double categories

$$
\mathcal{F}: q\text{-} \mathsf{Lax}_{\mathsf{hop}}^{\mathsf{ns}}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \to \mathsf{Lax}_{\mathsf{hop}}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

$$
H \mapsto (P, \gamma, \iota)
$$

full sub-2-categories: q - Lax $_{hop}^{ns-u}$ ($\mathbb{A} \times \mathbb{B}, \mathbb{C}$): *unital* lax double quasi-functors (meaning that $(-, A)$ and $(B,-)$ are unital, i.e. $\iota^{\mathcal{A}},\iota^{\mathcal{B}}$ invertible) $\mathsf{Lax}_{hop}^{u-d}(\mathbb{A} \times \mathbb{B}, \mathbb{C})$: unital and decomposable lax double functors $\overline{(i \text{ and } \gamma_{(1_A,g),(f,1_{B'})})}$ are invertible).

 F restricts to 2-equivalences:

$$
\mathcal{F}' : q\text{-} \text{Lax}_{hop}^{ns-u}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \xrightarrow{\simeq} \text{Lax}_{hop}^{u-d}(\mathbb{A} \times \mathbb{B}, \mathbb{C}).
$$

$$
\mathcal{F}'' : q\text{-} \text{Ps}_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \xrightarrow{\simeq} \text{Ps}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C}).
$$

KID KØD KED KED E 1090

"(Un)currying" 2-functor

•
$$
q\text{-} \text{Lax}_{hop}^{ns}(\mathbb{A} \times \mathbb{B}, \mathbb{C}) \stackrel{*}{\cong} \text{Lax}_{hop}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]]^{ns});
$$

"(Un)currying" 2-functor

• q- Lax $_{hop}^{ns}(A \times B, C) \stackrel{*}{\cong}$ Lax $_{hop}(A, [\![B, C]\!]^{ns})$; composing with F yields an **uncurrying** 2-functor:

$$
\mathsf{Lax}_{hop}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]^{ns}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q

"(Un)currying" 2-functor

• q- Lax $_{hop}^{ns}(A \times B, C) \stackrel{*}{\cong}$ Lax $_{hop}(A, [\![B, C]\!]^{ns})$; composing with F yields an **uncurrying** 2-functor:

$$
\mathsf{Lax}_{hop}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]^{ns}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

K ロ > K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

• q - Lax $_{hop}^{ns-u}$ ($\mathbb{A} \times \mathbb{B}, \mathbb{C}$) \cong Lax $_{hop}^{u}(\mathbb{A}, [\mathbb{B}, \mathbb{C}]^{ns-u})$;

"(Un)currying" 2-functor

• q- Lax $_{hop}^{ns}(A \times B, C) \stackrel{*}{\cong}$ Lax $_{hop}(A, [\![B, C]\!]^{ns})$; composing with F yields an **uncurrying** 2-functor:

$$
\mathsf{Lax}_{hop}(\mathbb{A}, [\![\mathbb{B}, \mathbb{C}]\!]^{ns}) \to \mathsf{Lax}_{hop}(\mathbb{A} \times \mathbb{B}, \mathbb{C})
$$

• q- Lax $_{hop}^{ns-u}$ ($\mathbb{A} \times \mathbb{B}$, \mathbb{C}) \cong Lax $_{hop}^{u}$ (\mathbb{A} , $[\mathbb{B}, \mathbb{C}]^{ns-u}$); composing with \mathcal{F}' one gets a currying 2-functor which is a 2-equivalence:

$$
\mathsf{Lax}_{\mathit{hop}}^{\mathit{u-d}}(\mathbb{A}\times\mathbb{B},\mathbb{C})\simeq \mathsf{Lax}_{\mathit{hop}}^{\mathit{u}}(\mathbb{A},\llbracket\mathbb{B},\mathbb{C}\rrbracket^{\mathit{ns-u}})
$$

KEL KALIKA ER KEN A GAG

Application to monads in double categories

The followong are straightforward:

A lax double functor $* \to \mathbb{D}$ is a monad in \mathbb{D} .

KORK ERKER ADAM ADA

Application to monads in double categories

The followong are straightforward:

- A lax double functor $* \rightarrow \mathbb{D}$ is a monad in \mathbb{D} .
- \blacktriangleright There are 2-category isomorphisms:

 $\textsf{Lax}_{hop}(*, \mathbb{D}) \cong \textsf{Mnd}(\mathcal{H}(\mathbb{D}))$

KORK ERKER ADAM ADA

Application to monads in double categories

The followong are straightforward:

- A lax double functor $* \rightarrow \mathbb{D}$ is a monad in \mathbb{D} .
- \blacktriangleright There are 2-category isomorphisms:

 $\textsf{Lax}_{hop}(*, \mathbb{D}) \cong \textsf{Mnd}(\mathcal{H}(\mathbb{D}))$

$$
q\text{-}\text{Lax}_{hop}(* \times *, \mathbb{D}) \cong \text{Mnd}(\text{Mnd}(\mathcal{H}(\mathbb{D}))).
$$

Application to monads in double categories

The followong are straightforward:

- A lax double functor $* \to \mathbb{D}$ is a monad in \mathbb{D} .
- \blacktriangleright There are 2-category isomorphisms:

 $\textsf{Lax}_{\textit{hop}}(*, \mathbb{D}) \cong \textsf{Mnd}(\mathcal{H}(\mathbb{D}))$

$$
q\text{-}\operatorname{\mathsf{Lax}}_{hop}(* \times *, \mathbb{D}) \cong \operatorname{\mathsf{Mnd}}(\operatorname{\mathsf{Mnd}}(\mathcal{H}(\mathbb{D}))).
$$

Bifunctor Theorem as a generalization of Beck's result on the composition of monads:

$$
q\text{-} \operatorname{Lax}_{hop}(* \times *, \mathbb{D}) \longrightarrow \operatorname{Lax}_{hop}(*, \mathbb{D})
$$
\n
$$
\cong \downarrow \cong
$$
\n
$$
\operatorname{Mnd}(\operatorname{Mnd}(\mathcal{H}(\mathbb{D}))) \longrightarrow \operatorname{Gomp}(\mathcal{H}(\mathbb{D})) \longrightarrow \operatorname{Mnd}(\mathcal{H}(\mathbb{D}))
$$