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> Gray-type tensor product on (strict-lax) double categories
> Bifunctor Theorem

> “(Un)currying 2-functors

> application to monads in double categories
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Double category as internal category

A double category is an internal category in the category Cat;.

There are: e categories Cp, C; (0-cells in Caty)
e functors (1-cells in Cat;)
s;t: GG —>CG, u:G—G0G andc:ClchC1—>C1

s.t. e C is associative and unital. P
A—B
o O-cells vx @ lz
| | NE
e vertical 1-cells e horizontal 1-cells

e squares (2-cells)

Co: O-cells and 1v-cells, Ci: 1h-cells and 2-cells.
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Pseudodouble category as internal category

A pseudodouble category is a
pseudocategory internal in the 2-category Cat;.

(an internal category in Caty)

There are: e categories Cp, C1 (0-cells in Catp)
e functors (1-cells in Catp)
s;t: GG —C, u:G—CG andc:Gxg, GG — G
e natural transformations (2-cells in Caty)
a:c® (idg X €)= c®(c x¢ idg)
ACc® (u X ¢ idcl) = I'dc1
p:c® (ide X, u) = idg

which satisfy a pentagon and a triangle.
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Bicategories and pseudodouble categories

A bicategory known to everyone:
0: algebras A, B..., 1: A-B-bimodules,

2: bimodule morphisms.

Pseudodouble category:

e (: algebras A, B

e 1v: alg. morphisms e 1h: A-B-bimodules

B M A e 2: bimodule morphisms
fl [o] lg

B’ N, A

a: M — N A-B-bimodule morphism
a-n-b:=g(a)-n-f(b)
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Bicategories and pseudodouble categories

P In every pseudodouble category there is a bicategory:
for vertical morphisms take only identities,

and correspondingly “globular 2-cells”. A f B

A28
(This is the horizontal bicategory H(D) of the pseudodouble category
D.)

> Each bicategory can be embedded into a pseudodouble category.

e Every pseudodouble category is double-equivalent to a double category
[Grandis-Paré: “Limits in double categories” (1999)].
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Functors of double categories

> (strict) double functors,
> pseudo double functors,

> (co)lax double functors.

F(f) F(g)

F(gf)
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The 2-category Mnd(K) of monads in K

0-cells:
2-monads (A, T: A— A, ur: TT—T,n7:1dg—T)

1-cells: pairs (X, ) : (A, T) — (A, T') where X : A — A’ is a 1-cell and
W T'X = XT a 2-cell s.t.

T T X T T X

- |

2-cells: (X,4) = (Y,¢') are given by 2-cells { : X — Y in K satisfying:
T X T X
—
o
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Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as
monads in appropriate bicategories.
However, morphisms between them are not monad maps.

e internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spang(V))
e enriched categories are monads in V-Mat.

BUT:

e monad morphisms between monads on the bicategories Spang(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.
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The double category Mnd(ID) of (double) monads

To address this issue [Fiore, Gambino, Kock: “Monads in double categories”
(2010)] defined the double category Mnd(ID) of monads:

e (double) monads
e vertical monad maps e horizontal monad maps

e squares (2-cells)

This allows to describe mathematical structures and morphisms between
them as monads and vertical monad maps in appropriate double categories.
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The double category Mnd(ID) of (double) monads

1v-cells: T

A—Tq—T .4 A—Tq—T .4
ul [a] lu [a] lu
A L
-] R I C R
A LAl A A T A
A—=v 4 A—=v 4
ul lu =l l:
I = A A T A
1wl el
| :
A A A A
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The double category Mnd(DD) of (double) monads

1v-cells:

AT T oy —T .4
febwl B L
A/LA/ T’ A — T
_ - u [a]
E e )

A A

R E
| @

= .o

- W

a—T A

-t
L

= 1v-cells in Mnd(Span(V)) are internal functors in V
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The double category Mnd(DD) of (double) monads

1v-cells:

AT T oy —T .4
febwl B L
A/LA/ T’ A — T
_ - u [a]
E e )

A A

R E
| @

= .o

- W

a—T A

-t
L

= 1v-cells in Mnd(Span(V)) are internal functors in V
= 1v-cells in Mnd(V- Mat) are V-enriched functors.
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Gray tensor product

Gray tensor product gives a (left and right) closed monoidal structure on a
category:
CX®VY,Z)=C(Y,[X, Z])

isomorphism natural in X, Y,Z € C, and (X ® —,[X, —]) is an adjoint pair of
endofunctors on C.

> There is composition: [B, C] x [A, B] — [A, C], a morphism in C defined via
ev's.

When C = 2-Cat (2-categories and 2-functors), the natural candidate for an inner
hom is the 2-category Fun(A, B) for 2-categories A, B (2-functors, lax natural
transformations, modifications).

BUT:

the composition ¢ : Fun(B,C) x Fun(A, B) — Fun(A,C) isn't a 2-functor:
although 1-cells (lax transformations) compose nicely, the 2-functor condition on
them for c translates into the “interchange law”: % o % = ﬁ‘?zz,

and the interchange does not hold in general on lax transformations (strictness of
transformations is needed).




Gray tensor product on double cats
[e]e] e}

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A ® B s.t.:

2-Cat(A® B,C) = 2-Cat(B, Fun(4,C)).



Gray tensor product on double cats
[e]e] e}

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A ® B s.t.:
2-Cat(A ® B,C) = 2-Cat(B, Fun(A,C)).

> A description of A ® B is obtained by seeing what a 2-functor
F:B — Fun(A,C) is.



Gray tensor product on double cats
[e]e] e}

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A ® B s.t.:
2-Cat(A ® B,C) = 2-Cat(B, Fun(A,C)).

> A description of A ® B is obtained by seeing what a 2-functor
F:B — Fun(A,C) is.

> One obtains “quasi-functor of two variables” H : A x B — C defined
by relations among F(B)(A),A € A,B € B,



Gray tensor product on double cats
[e]e] e}

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A ® B s.t.:
2-Cat(A ® B,C) = 2-Cat(B, Fun(A,C)).
> A description of A ® B is obtained by seeing what a 2-functor

F :B — Fun(A,C) is.

> One obtains “quasi-functor of two variables” H : A x B — C defined
by relations among F(B)(A),A € A,B € B,
and concludes the relations holding in A ® B.



Gray tensor product on double cats
[e]e] e}

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A ® B s.t.:
2-Cat(A ® B,C) = 2-Cat(B, Fun(A,C)).

> A description of A ® B is obtained by seeing what a 2-functor
F :B — Fun(A,C) is.

> One obtains “quasi-functor of two variables” H : A x B — C defined
by relations among F(B)(A),A € A,B € B,
and concludes the relations holding in A ® B.

The relation that differs from what holds in the Cartesian product is:

(FoB)A®g) S (A ®g)(f  B).



Gray tensor product on double cats
[e]e] e}

Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A ® B s.t.:
2-Cat(A ® B,C) = 2-Cat(B, Fun(A,C)).

> A description of A ® B is obtained by seeing what a 2-functor
F :B — Fun(A,C) is.

> One obtains “quasi-functor of two variables” H : A x B — C defined
by relations among F(B)(A),A € A,B € B,
and concludes the relations holding in A ® B.

The relation that differs from what holds in the Cartesian product is:
(FoB)(Ag) S (A @ g)(f @ B).

Gray proved that A ® B yields a monoidal product on 2-Cat.
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Gray tensor product for (strict-strict) double categories

In

[G. Béhm: “The Gray Monoidal Product of Double Categories” (2020)]
monoidal structure in (DblZf, ®) is obtained from:

Dbl (A © B, C) = Dbl (A, [B. C]).

In

[B. Femi¢: “Enrichment and internalization in tricategories, the case of tensor
categories and alternative notion to intercategories”|:

> we characterized a double functor F : A — [B, C],
> we read off the structure of the double cat. F(A)(B)

> and described A ® B by relations.
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Towards the Gray tensor product on (strict-lax)
double categories

[B. Femi¢: “ Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors”]

We define [A, B]
e 0: lax double functors

e 1v: vertical lax transf. e 1h: horizontal oplax transf.

e modifications

» We characterized a lax double functor F : A — [B, CJ,

> got to the notion of /lax double quasi-functor H : A x B — C,
> concluded the relations holding in A ® B,

> and proved that — ® — fulfills the monoidal product properties.
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The Gray tensor product on (strict-lax)
double categories

Section 3: Isom. of 2-cats: g- Laxpop(A x B, C) =~ Laxpop(A, [B, C]).
Prop. 5.1 Isom. of 2-cats: g- Laxp;,(A x B, C) = Laxpep(A @ B, C).

Consequently: Laxpop(A @ B, C) = Laxpep(A, [B, C]™).

> Hence, there is a natural isomorphism of sets:
DbIf(A @ B, C) = Dbl (A, [B, C]"™).

e (DbIt,®) is a closed monoidal category.
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[MacLane:]
Given functors L¢c:B8—D and Mg: C— D so that
Le(B)=Mg(C),vBe B,CeC.
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[P.F. Faul, G. Manuell, J. Siqueira: “2-Dimensional Bifunctor Theorems and
Distributive laws”, (2021)]

Let o € Dist(B,C, D) be a distributive law between families of lax functors
Le:B—Dand Mg :C —-DVBeB,CeC(.
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[MacLane:]

Given functors L¢c:B8—D and Mg: C— D so that
Le(B)=Mp(C),¥B € B,C eC.

Then 3 a bifunctor P:BxC—D / Lc=P(—, C) and Mg = P(B,—)
<~ Lco(F)Mg(g) = Mp/(g)Lc(f),Vf:B—B' in B,g:C—C"inC.
In this case, P(B,C) = Lc(B) = Mg(C) and P(f,g) = Mg:/(g)Lc(f).

[P.F. Faul, G. Manuell, J. Siqueira: “2-Dimensional Bifunctor Theorems and
Distributive laws”, (2021)]

Let o € Dist(B,C, D) be a distributive law between families of lax functors
Le:B—Dand Mg :C —-DVBeB,CeC(.

Then there is a lax bifunctor P : B x C — D with

P(B,C) = Lc(B) = Ms(C), P(f,g) = Ms/(g)Lc(f) and

P(a, B) = [Lc(a)|Mp/(B)] on 0-,1- and 2-cells, resp.,

with given compositor (in terms of &) and unitor.

» 2-functor K : Dist(B,C, D) — Laxop(B x C, D)

> K restricts to a 2-equivalence.
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Bifunctor Theorem: double categories

F: g-Laxs,(A x B, C) — Laxpop(A x B, C)
H— (P,v,¢)
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Bifunctor Theorem: double categories

F 1 g-Laxpo,(A x B,C) — Laxpop(A x B, C)
H — ('D*A/*[)

full sub-2-categories:

g- Laxpo,'(A x B, C): unital lax double quasi-functors (meaning that (—, A)

and (B —) are unital, i.e. 14, B invertible)

Laxhop(A x B, C): unital and decomposable lax double functors

(¢ and Y(1,.¢),(f, 1) are invertible).
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Bifunctor Theorem: double categories

F 1 g-Laxpo,(A x B,C) — Laxpop(A x B, C)
H — ('D*A/* [/)

full sub-2-categories:

g- Laxpo,'(A x B, C): unital lax double quasi-functors (meaning that (—, A)

and (B —) are unital, i.e. 14, B invertible)

Laxhop(A x B, C): unital and decomposable lax double functors

(¢ and Y(1,.¢),(f, 1) are invertible).
F restricts to 2-equivalences:
F' i g-Laxjsy (A x B,C) = Laxj9(A x B,C).

F": q-Psps (A x B,C) = Pspop(A x B, C).
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“(Un)currying” 2-functor

 ¢-Laxjs, (A x B,C) = Laxpop(A, [B, C]™);
composing with F yields an uncurrying 2-functor:

Laxpop(A, [B, C]") — Laxpep(A x B, C)
e g-Laxj, (A x B, C) = Laxj,, (A, [B, C[™™);
composing W|th F' one gets a currying 2-functor which is a 2-equivalence:

Laxhop(A x B, C) > Laxp,, (A, [B,C]™™)
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Application to monads in double categories

The followong are straightforward:
> A lax double functor x — DD is a monad in D.
> There are 2-category isomorphisms:

Laxpop(*, D) = Mnd(H (D))

g- Laxpop(* % *,D) = Mnd(Mnd(#H(D))).

Bifunctor Theorem as a generalization of Beck's result on the composition
of monads:

q- Laxhop(* X *:D) 7 Laxhop(*aD)

| |~

Mnd(Mnd(H(D))) Comp(HD)) Mnd(H (D))
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