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Overview of the talk

Introductory part:

I double categories (as specific internal categories)

I double category of monads
(why “vertical morphisms” of monads are useful)

Gray-type tensor product on double categories

I Gray-type tensor product on (strict-strict) double categories
I Bifunctor Theorem for (lax-hop) double categories

I Gray-type tensor product on (strict-lax) double categories
I Bifunctor Theorem
I “(Un)currying 2-functors
I application to monads in double categories
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Double categories

Bicategory: • 0-cells
• 1-cells
• 2-cells

Double category:
• 0-cells

• vertical 1-cells • horizontal 1-cells

• squares (2-cells)
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Double category as internal category

A double category is an internal category in the category Cat1.

There are: • categories C0,C1 (0-cells in Cat1)
• functors (1-cells in Cat1)

s, t : C1 −→ C0, u : C0 −→ C1 and c : C1 ×C0 C1 −→ C1

s.t. • c is associative and unital.

A B-f

?
z

?
v

A′ B ′-g

α• 0-cells

• vertical 1-cells • horizontal 1-cells

• squares (2-cells)

C0: 0-cells and 1v-cells, C1: 1h-cells and 2-cells.
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Pseudodouble category as internal category

A pseudodouble category is a
pseudocategory internal in the 2-category Cat2.

(an internal category in Cat2)

There are: • categories C0,C1 (0-cells in Cat2)
• functors (1-cells in Cat2)

s, t : C1 −→ C0, u : C0 −→ C1 and c : C1 ×C0 C1 −→ C1

• natural transformations (2-cells in Cat2)

α : c ⊗ (idC1 ×C0 c)⇒ c ⊗ (c ×C0 idC1)

λ : c ⊗ (u ×C0 idC1)⇒ idC1

ρ : c ⊗ (idC1 ×C0 u)⇒ idC1

which satisfy a pentagon and a triangle.
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Bicategories and pseudodouble categories

A bicategory known to everyone:
0: algebras A,B..., 1: A-B-bimodules, 2: bimodule morphisms.

Pseudodouble category:

• 0: algebras A,B

• 1v: alg. morphisms • 1h: A-B-bimodules

• 2: bimodule morphisms
B A-M

?
g

?
f

B ′ A′-N

α

α : M −→ N A-B-bimodule morphism

a · n · b := g(a) · n · f (b)
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Bicategories and pseudodouble categories

I In every pseudodouble category there is a bicategory:

for vertical morphisms take only identities,
and correspondingly “globular 2-cells”.

A B-f

?
=

?
=

A B-g

(This is the horizontal bicategory H(D) of the pseudodouble category
D.)

I Each bicategory can be embedded into a pseudodouble category.

• Every pseudodouble category is double-equivalent to a double category
[Grandis-Paré: “Limits in double categories” (1999)].
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[Grandis-Paré: “Limits in double categories” (1999)].



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Functors of double categories

I (strict) double functors,

I pseudo double functors,

I (co)lax double functors.

-F (f ) -F (g)

-
F (gf )

?
=

?
=
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Why

the 2-category Mnd(K)

of 2-monads

isn’t enough
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The 2-category Mnd(K) of monads in K

0-cells:
2-monads (A, T : A−→A, µT : TT −→T , ηT : IdA−→T )

1-cells: pairs (X , ψ) : (A,T ) −→ (A′,T ′) where X : A −→ A′ is a 1-cell and
ψ : T ′X ⇒ XT a 2-cell s.t.

T ′ T ′ X

ψ

ψ
	
X T

=

T ′ T ′ X
	
ψ

X T

;

Xd
ψ

X T

=

X d
X T

2-cells: (X , ψ)⇒ (Y , ψ′) are given by 2-cells ζ : X −→ Y in K satisfying:

T ′ X

ψ

ζ

Y T

=

T ′ X

ζ

ψ′

Y T
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Monads and monad morphisms

Categories, operads, multicategories and T-multicategories

can all be seen as
monads in appropriate bicategories.
However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spand(V))
• enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories Spand(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as
monads in appropriate bicategories.

However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spand(V))
• enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories Spand(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as
monads in appropriate bicategories.
However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spand(V))
• enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories Spand(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as
monads in appropriate bicategories.
However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spand(V))

• enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories Spand(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as
monads in appropriate bicategories.
However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spand(V))
• enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories Spand(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Monads and monad morphisms

Categories, operads, multicategories and T-multicategories can all be seen as
monads in appropriate bicategories.
However, morphisms between them are not monad maps.

• internal categories (with a discrete object of objects)
are monads in Span(V) (resp. in Spand(V))
• enriched categories are monads in V-Mat.

BUT:

• monad morphisms between monads on the bicategories Spand(V) and V-Mat
are not functors of categories internal in V, resp. of categories enriched over V.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

The double category Mnd(D) of (double) monads

To address this issue [Fiore, Gambino, Kock: “Monads in double categories”
(2010)] defined the double category Mnd(D) of monads:

• (double) monads

• vertical monad maps • horizontal monad maps

• squares (2-cells)

This allows to describe mathematical structures and morphisms between
them as monads and vertical monad maps in appropriate double categories.
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The double category Mnd(D) of (double) monads

1v-cells:
A A-T A-T

A′ A′-T ′ A′-T ′?
u

?
u

?
uα α

A′ A′-T ′?
=

?
=µ′

=

A A-T A-T

A A-T
?

=

?

=
µ

A′ A′-T ′?
u

?
uα

A A-=

A′ A′-=

A′ A′-T ′

?
u

?
=

?
u

?
=

Idu

η′
=

A A-=

A A-T

A′ A′-T ′

?
=

?
u

?
=

?
u

η

α

⇒ 1v-cells in Mnd(Span(V)) are internal functors in V
⇒ 1v-cells in Mnd(V- Mat) are V-enriched functors.
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Gray tensor product
on double categories
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Gray tensor product

Gray tensor product gives a (left and right) closed monoidal structure on a
category:

C(X ⊗ Y ,Z ) ∼= C(Y , [X ,Z ])

isomorphism natural in X ,Y ,Z ∈ C, and (X ⊗−, [X ,−]) is an adjoint pair of
endofunctors on C.

I There is composition: [B,C ]× [A,B] −→ [A,C ], a morphism in C defined via
ev ’s.

When C = 2-Cat (2-categories and 2-functors), the natural candidate for an inner
hom is the 2-category Fun(A,B) for 2-categories A,B (2-functors, lax natural
transformations, modifications).
BUT:
the composition c : Fun(B, C)× Fun(A,B) −→ Fun(A, C) isn’t a 2-functor:
although 1-cells (lax transformations) compose nicely, the 2-functor condition on
them for c translates into the “interchange law”: β

β′ ◦ α
α′ = β◦α

β′◦α′

and the interchange does not hold in general on lax transformations (strictness of
transformations is needed).
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Gray tensor product on 2-Cat by generators and relations

One looks for a 2-category A⊗ B s.t.:

2-Cat(A⊗ B, C) ∼= 2-Cat(B,Fun(A, C)).

I A description of A⊗ B is obtained by seeing what a 2-functor
F : B −→ Fun(A, C) is.

I One obtains “quasi-functor of two variables” H : A× B −→ C defined
by relations among F (B)(A),A ∈ A,B ∈ B,
and concludes the relations holding in A⊗ B.

The relation that differs from what holds in the Cartesian product is:

(f ⊗ B ′)(A⊗ g)
6=⇒ (A′ ⊗ g)(f ⊗ B).

Gray proved that A⊗ B yields a monoidal product on 2-Cat.
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Gray tensor product for (strict-strict) double categories

In
[G. Böhm: “The Gray Monoidal Product of Double Categories” (2020)]
monoidal structure in (Dbl stst ,⊗) is obtained from:

Dbl stst (A⊗ B,C) ∼= Dbl stst (A, JB,CK).

In
[B. Femić: “Enrichment and internalization in tricategories, the case of tensor
categories and alternative notion to intercategories”]:

I we characterized a double functor F : A −→ JB,CK,

I we read off the structure of the double cat. F (A)(B)

I and described A⊗ B by relations.
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[B. Femić: “Enrichment and internalization in tricategories, the case of tensor
categories and alternative notion to intercategories”]:

I we characterized a double functor F : A −→ JB,CK,

I we read off the structure of the double cat. F (A)(B)

I and described A⊗ B by relations.



Double categories Double category Mnd(D) Gray tensor product on double cats Bifunctor Thm

Bifunctor Theorem
for (lax-hop)

double categories
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Towards the Gray tensor product on (strict-lax)
double categories

[B. Femić: “ Bifunctor Theorem and Gray monoidal structure for double categories with lax double functors”]

We define JA,BK
• 0: lax double functors

• 1v: vertical lax transf. • 1h: horizontal oplax transf.

• modifications

I We characterized a lax double functor F : A −→ JB,CK,

I got to the notion of lax double quasi-functor H : A× B −→ C,

I concluded the relations holding in A⊗ B,

I and proved that −⊗− fulfills the monoidal product properties.
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The Gray tensor product on (strict-lax)
double categories

Section 3: Isom. of 2-cats: q- Laxhop(A× B,C)
∗∼= Laxhop(A, JB,CK).

Prop. 5.1 Isom. of 2-cats: q- Laxnshop(A× B,C) ∼= Laxhop(A⊗ B,C).

Consequently: Laxhop(A⊗ B,C) ∼= Laxhop(A, JB,CKns).

I Hence, there is a natural isomorphism of sets:

Dbl stlx (A⊗ B,C) ∼= Dbl stlx (A, JB,CKns).

• (Dbl stlx ,⊗) is a closed monoidal category.
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Bifunctor Theorem: 1- and 2-categories

[MacLane:]
Given functors LC :B−→D and MB : C−→D so that
LC (B)=MB(C ),∀B ∈ B,C ∈ C.

Then ∃ a bifunctorP :B×C−→D / LC =P(−,C ) and MB = P(B,−)
⇐⇒ LC ′(f )MB(g) = MB′(g)LC (f ),∀f :B−→B ′ in B, g :C−→C ′ in C.

In this case, P(B,C ) = LC (B) = MB(C ) and P(f , g) = MB′(g)LC (f ).

[P.F. Faul, G. Manuell, J. Siqueira: “2-Dimensional Bifunctor Theorems and
Distributive laws”, (2021)]
Let σ ∈ Dist(B, C,D) be a distributive law between families of lax functors
LC : B −→ D and MB : C −→ D ∀B ∈ B,C ∈ C.
Then there is a lax bifunctor P : B × C −→ D with
P(B,C ) = LC (B) = MB(C ), P(f , g) = MB′(g)LC (f ) and
P(α, β) = [LC (α)|MB′(β)] on 0-,1- and 2-cells, resp.,
with given compositor (in terms of σ) and unitor.

I 2-functor K : Dist(B, C,D) −→ Laxop(B × C,D)

I K restricts to a 2-equivalence.
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Bifunctor Theorem: double categories

F : q- Laxnshop(A× B,C) −→ Laxhop(A× B,C)

H 7→ (P, γ, ι)

full sub-2-categories:
q- Laxns-uhop (A× B,C): unital lax double quasi-functors (meaning that (−,A)

and (B,−) are unital, i.e. ιA, ιB invertible)
Laxu-d

hop(A× B,C): unital and decomposable lax double functors

(ι and γ(1A,g),(f ,1B′ ) are invertible).

F restricts to 2-equivalences:

F ′ : q- Laxns-uhop (A× B,C)
'−→ Laxu-d

hop(A× B,C).

F ′′ : q-Psnshop(A× B,C)
'−→ Pshop(A× B,C).
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“(Un)currying” 2-functor

• q- Laxnshop(A× B,C)
∗∼= Laxhop(A, JB,CKns);

composing with F yields an uncurrying 2-functor:

Laxhop(A, JB,CKns) −→ Laxhop(A× B,C)

• q- Laxns-uhop (A× B,C) ∼= Laxuhop(A, JB,CKns-u);
composing with F ′ one gets a currying 2-functor which is a 2-equivalence:

Laxu-d
hop(A× B,C) ' Laxuhop(A, JB,CKns-u)
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Application to monads in double categories

The followong are straightforward:

I A lax double functor ∗ −→ D is a monad in D.

I There are 2-category isomorphisms:

Laxhop(∗,D) ∼= Mnd(H(D))

q- Laxhop(∗ × ∗,D) ∼= Mnd(Mnd(H(D))).

Bifunctor Theorem as a generalization of Beck’s result on the composition
of monads:

q- Laxhop(∗ × ∗,D) Laxhop(∗,D)-F

?
∼=

Mnd(Mnd(H(D))) Mnd(H(D))-
Comp(H(D))

?
∼=
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