

RESTRICTION LIMITS VS DOUBLE-CATEGORICAL LIMITS

BRYCE CLARKE

Tallinn University of Technology
bryceclarke.github.io

Foundations seminar
University of Tartu
10 February 2026

MOTIVATION & OUTLINE

01

- Both functions and partial functions are important in mathematics \rightsquigarrow what structures in category theory should be used to study them?
- The category Par of sets & partial functions is the Kleisli category for the monad $(-)+1 : \text{Set} \rightarrow \text{Set}$.
 $A \rightarrow B \rightsquigarrow A \rightarrow B+1 \rightsquigarrow A \leftrightarrow X \rightarrow B$
- Par is less nice than Set as a category; instead we may use restriction categories & double categories.

1. Background on restriction categories and double categories
2. Restriction limits
3. Limits indexed by double categories
4. Limits indexed by loose distributors

GOAL: Show that restriction limits are certain double-categorical limits, using partial functions as a case study.

BACKGROUND ON
RESTRICTION CATEGORIES &
DOUBLE CATEGORIES

RESTRICTION CATEGORIES

02

A restriction category is a category \mathcal{C} equipped with a restriction operator

$$f: A \rightarrow B \quad \rightsquigarrow \quad \bar{f}: A \rightarrow A$$

satisfying the following axioms:

$$(R1) \quad f \circ \bar{f} = f \quad \forall f: A \rightarrow B$$

$$(R2) \quad \bar{f} \circ \bar{g} = \bar{g} \circ \bar{f} \quad \forall f: A \rightarrow B, g: A \rightarrow C$$

$$(R3) \quad \overline{g \circ f} = \bar{g} \circ \bar{f} \quad \forall f: A \rightarrow B, g: A \rightarrow C$$

$$(R4) \quad \bar{g} \circ f = f \circ \overline{g \circ f} \quad \forall f: A \rightarrow B, g: B \rightarrow C$$

Morphism $f: A \rightarrow B$ is **total** if $\bar{f} = 1_A$.

Let $\text{Total}(\mathcal{C})$ be the wide subcategory of total maps.

Each $\mathcal{C}(A, B)$ is a poset where $f \leq g$ if $f = g \circ \bar{f}$.

The category Par of sets & partial functions is a restriction category where

$$A \xleftarrow{i} X \xrightarrow{f} B \quad \rightsquigarrow \quad A \xleftarrow{i} X \xrightarrow{i} A$$

A restriction functor $F: \mathcal{C} \rightarrow \mathcal{D}$ satisfies $F\bar{f} = \overline{Ff}$.

A (lax) transformation $\alpha: F \Rightarrow G$ has components

$\alpha_A: FA \rightarrow GA$ that are **total** and satisfy

$$\begin{array}{ccc} FA & \xrightarrow{Ff} & FB \\ \alpha_A \downarrow & \gtrless & \downarrow \alpha_B \\ GA & \xrightarrow{Gf} & GB \end{array} \quad \rightsquigarrow \quad Ff \circ \alpha_B = Gf \circ \alpha_A \circ \overline{Ff}$$

Let RCatl be the 2-category of restriction categories.

DOUBLE CATEGORIES

03

A double category \mathbf{ID} consists of:

- objects A, B, C, D, \dots
- tight morphisms $f: A \rightarrow B$ (drawn vertical)
- loose morphisms $p: A \rightarrow B$ (drawn horizontal)
- cells

$$\begin{array}{ccc} A & \xrightarrow{p} & B \\ f \downarrow & \alpha & \downarrow g \\ C & \xrightarrow{q} & D \end{array}$$

- tight identities 1_A and composites $g \circ f$
- loose identities id_A and composites $p \circ q$
- left unitor, right unitor, associator isocells
 $\text{id}_A \circ p \cong p \quad p \circ \text{id}_B \cong p \quad p \circ (q \circ r) \cong (p \circ q) \circ r$

There is a ^{strict} double category \mathbf{Par} whose:

- objects are sets
- tight morphisms are functions
- loose morphisms are partial functions
- cells are diagrams

$$\begin{array}{ccccc} A & \xleftarrow{i} & X & \xrightarrow{p} & B \\ f \downarrow & & \downarrow \alpha & & \downarrow g \\ C & \xleftarrow{j} & Y & \xrightarrow{q} & D \end{array} \quad \begin{array}{l} \alpha: X \rightarrow Y \text{ is unique} \\ \text{if it exists } \rightsquigarrow \\ \text{thin double category} \end{array}$$

The underlying 2-category whose 1-cells are loose morphisms recovers \mathbf{Par} as a poset-enriched category.

NORMAL LAX FUNCTORS & TRANSFORMATIONS

04

A normal lax functor $F: \mathbb{C} \rightarrow \mathbb{D}$ is an assignment

$$\begin{array}{ccc}
 A & \xrightarrow{p} & B \\
 f \downarrow & \alpha & \downarrow g \\
 C & \xrightarrow{q} & D
 \end{array}
 \quad \rightsquigarrow \quad
 \begin{array}{ccc}
 FA & \xrightarrow{Fp} & FB \\
 Ff \downarrow & F\alpha & \downarrow Fg \\
 FC & \xrightarrow{Fq} & FD
 \end{array}$$

preserving tight identities & composites and
loose identities together with **compositor** cells:

$$\begin{array}{ccc}
 FA & \xrightarrow{Fp \circ Fq} & FC \\
 1 \downarrow & \underline{c}(p,q) & \downarrow 1 \\
 FA & \xrightarrow{F(p \circ q)} & FC
 \end{array}
 \quad \text{natural + coherent}$$

Strict functor if laxators are identities.

A transformation $\varphi: F \Rightarrow G$ consists of cells

$$\begin{array}{ccc}
 FA & \xrightarrow{Fp} & FB \\
 \varphi_A \downarrow & \varphi_p & \downarrow \varphi_B \\
 GA & \xrightarrow{Gp} & GB
 \end{array}
 \quad \text{natural}$$

such that $\varphi_{id_A} = id_{\varphi_A}$ and

$$\begin{array}{c}
 \varphi_p \circ \varphi_q \\
 \hline
 \underline{c}(p,q)
 \end{array}
 = \begin{array}{c}
 \underline{c}(p,q) \\
 \hline
 \varphi_p \circ q
 \end{array}$$

Let $\mathbf{Dbl}_{\mathbf{nl}}$ be the 2-category of double categories
and normal lax functors. Similarly $\mathbf{Dbl}_{\mathbf{s}}$ for
strict double functors.

FROM RESTRICTION CATEGORIES TO DOUBLE CATEGORIES

05

Let \mathcal{C} be a restriction category. There is a strict double category $\mathbb{R}(\mathcal{C})$ whose:

- objects are objects of \mathcal{C}
- loose morphisms are morphisms of \mathcal{C}
- tight morphisms are the total morphisms
- cells are given by

$$\begin{array}{ccc} A & \xrightarrow{p} & B \\ f \downarrow & \gg & \downarrow g \\ C & \xrightarrow{q} & D \end{array} \quad \rightsquigarrow \quad \begin{array}{l} g \circ p \leq q \circ f \\ \text{i.e.} \\ g \circ p = q \circ f \circ \bar{p} \end{array}$$

Determines a 2-functor $\mathbb{R}: \mathbf{RCatl} \rightarrow \mathbf{Dbl}_s$ which is locally fully faithful.

Example: $\mathbb{R}(\mathbf{Par}) \cong \mathbf{IPar}$.

RESTRICTION LIMITS

RESTRICTION LIMITS

finite category
↓

The restriction limit of $F: J \rightarrow \mathcal{C}$ is a cone with total components

$$\begin{array}{ccc} & \lim F & \\ \pi_A \swarrow & \nwarrow \pi_B & \\ FA & \xrightarrow{Ff} & FB \end{array}$$

such that for any lax cone

$$\begin{array}{ccc} & X & \\ \varphi_A \swarrow & \gg & \searrow \varphi_B \\ FA & \xrightarrow{Ff} & FB \end{array} \quad \varphi_B = Ff \circ \varphi_A \circ \overline{\varphi_B}$$

there exists a unique morphism $u: X \rightarrow \lim F$ such that $\pi_A \circ u = \varphi_A \circ e$ where $e = \prod_{A \in J} \overline{\varphi_A}$ is the composite of the restriction idempotents.

For a (finite) category J and restriction category \mathcal{C} , there is a restriction category \mathcal{C}^J whose:

- objects are functors $F: J \rightarrow \mathcal{C}$
- morphisms $\alpha: F \Rightarrow G$ consist of a morphism $\alpha_A: FA \rightarrow GA$ for each $A \in J$ such that

$$\begin{array}{ccc} FA & \xrightarrow{Ff} & FB \\ \alpha_A \downarrow & \gg & \downarrow \alpha_B \\ GA & \xrightarrow{Gf} & GB \end{array} \quad \alpha_B \circ Ff = Gf \circ \alpha_A \circ \overline{\alpha_B \circ Ff}$$

for each $f: A \rightarrow B$ in J .

Prop (Cockett & Lack): There is a right adjoint to $\Delta: \mathcal{C} \rightarrow \mathcal{C}^J$ in RCatl if and only if each $F: J \rightarrow \mathcal{C}$ admits a restriction limit.

EXAMPLES: RESTRICTION TERMINAL OBJECTS & PRODUCTS

07

Case $J = \emptyset$: A restriction terminal object is a right adjoint to $\mathcal{C} \rightarrow 1$ in RCatl . It is an object T together with a total map $t_A: A \rightarrow T$ for each object A , such that $t_T = 1_T$ and $t_B \circ f = t_A \bar{f}$ for each morphism $f: A \rightarrow B$.

Case $J = \{0,1\}$: The restriction product of A and B is an object $A \times B$ together with total morphisms $A \xleftarrow{\pi_A} A \times B \xrightarrow{\pi_B} B$ such that for any span $A \xleftarrow{f} X \xrightarrow{g} B$ there is a unique morphism $\langle f, g \rangle: X \rightarrow A \times B$

such that $\pi_A \circ \langle f, g \rangle = f \circ \bar{g}$ and $\pi_B \circ \langle f, g \rangle = g \circ \bar{f}$.

$$\begin{array}{ccc} X & & \\ \downarrow \langle f, g \rangle & & \\ A \times B & \leqslant & B \\ \pi_A \swarrow & & \searrow \pi_B \\ A & & B \end{array}$$

Example: In Par , the restriction terminal is the singleton set and the restriction product is the cartesian product.

$$\begin{array}{ccccc} & i & \nearrow & j & \\ & Y & & Z & \\ & \uparrow & & \downarrow & \\ f \swarrow & X & \xleftarrow{\pi_A} & A \times B & \xrightarrow{\pi_B} B \\ A & \xleftarrow{\quad} & & \xleftarrow{f \times g} & \xrightarrow{\quad} B \end{array} \quad \begin{array} {l} \text{pullback of} \\ i \text{ and } j \end{array}$$

SPLITTING OF RESTRICTION IDEMPOTENTS

08

Case $J = \{0 \rightarrow 1\}$: The limit of a morphism

$f: A \rightarrow B$ consists of a cone

$$\begin{array}{ccc} & P & \\ \pi \swarrow & & \searrow f\pi \\ A & \xrightarrow{f} & B \end{array}$$

$\pi, f\pi$ are total

such that

$$\begin{array}{ccc} & Q & \\ q_1 \swarrow & & \searrow q_2 \\ A & \xrightarrow{f} & B \end{array}$$

$$\begin{array}{ccc} & Q & \\ q_1 \swarrow & \nearrow \exists! u & \searrow q_2 \\ \pi \swarrow & & \searrow f\pi \\ A & \xrightarrow{f} & B \end{array}$$

where $\pi \circ u = q_1 \circ \bar{q}_2$.

Apply to the cone:

$$\begin{array}{ccc} & A & \\ 1_A \swarrow & \nearrow f & \searrow \pi \\ A & \xrightarrow{f} & B \end{array} \rightsquigarrow \begin{array}{ccc} & A & \\ \downarrow u & & \searrow f\pi \\ P & \xrightarrow{\leq} & B \end{array}$$

Unique $u: A \rightarrow B$ such that $\pi \circ u = \bar{f}$.

Can also show that $u \circ \pi = 1_P$

Example: The limit of a partial function
 $A \xleftarrow{i} X \xrightarrow{f} B$ is X .

Prop (Cockett & Lack): A restriction category \mathcal{C} admits all limits iff restriction idempotents split and $\text{Total}(\mathcal{C})$ admits finite limits.

LIMITS INDEXED BY DOUBLE CATEGORIES

LIMITS INDEXED BY DOUBLE CATEGORIES

09

A **cone** (X, φ) over a normal lax functor $F: \mathbb{J} \rightarrow \mathbb{D}$ is an object $X \in \mathbb{D}$ & a transformation $\varphi: F \rightarrow \text{Id}_X$.

$$\begin{array}{ccc} \mathbb{J} & \xrightarrow{!} & \mathbb{1} \\ F \downarrow & \Leftrightarrow & \downarrow \varphi \\ \mathbb{D} & \xrightarrow{X} & \end{array} = \begin{array}{ccc} \mathbb{J} & \xrightarrow{!} & \mathbb{1} \\ F \downarrow & \Leftrightarrow & \downarrow \varphi \\ \mathbb{D} & \xrightarrow{\varphi_f} & \mathbb{1} \\ & \curvearrowleft & \curvearrowright X \end{array}$$

A **morphism of cones** $f: (X, \varphi) \rightarrow (Y, \psi)$ is a tight morphism $f: X \rightarrow Y$ such that $\psi \circ f = \varphi$.

A **limit** of $F: \mathbb{J} \rightarrow \mathbb{D}$ is a terminal object $(\lim F, \pi)$ in the category of cones over F .

$$\begin{array}{ccccc} \lim F & & \lim F & \xrightarrow{\text{id}} & \lim F \\ \pi_A \downarrow & & \pi_A \downarrow & \pi_B & \downarrow \pi_B \\ A & & A & \xrightarrow{p} & B \end{array} \quad \text{components of } \pi$$

Universal property states for any cone (X, φ) over F there exists a unique tight morphism $u: X \rightarrow \lim F$ such that

$$\begin{array}{ccc} X & \xrightarrow{\text{id}} & X \\ u \downarrow & \text{id}_u & \downarrow u \\ \lim F & \xrightarrow{\text{id}} & \lim F \\ \varphi_A \downarrow & \pi_p & \downarrow \pi_B \\ FA & \xrightarrow{Fp} & FB \end{array} = \begin{array}{ccc} X & \xrightarrow{\text{id}} & X \\ \varphi_A \downarrow & \varphi_p & \downarrow \varphi_B \\ FA & \xrightarrow{Fp} & FB \end{array}$$

Theorem (Grandis & Paré): A double category admits limits indexed by any double category \mathbb{J} if and only if it admits tight limits and tabulators.

TIGHT LIMITS & TABULATORS

10

Category $J \rightsquigarrow$ double category $\Pi_i(C)$

- objects and tight morphisms determined by C
- loose morphisms and cells are identities

A **tight limit** is a limit of $F: \Pi_i(J) \rightarrow \mathbb{D}$,
 but this is the same as the limit of the
 functor $F_0: J \rightarrow \mathbb{D}_0$ in the underlying
 category of objects and tight morphisms in \mathbb{D} .

Example: $\mathbb{R}(C)$ admits all tight limits if and
 only if $\text{Total}(C)$ admits all limits.

Tight limits in $\mathbb{P}\text{ar}$ are just limits in Set .

A **tabulator** is a limit of $\{0 \leftrightarrow 1\} \xrightarrow{P} \mathbb{D}$,
 i.e. a loose morphism $p: A \rightarrow B$ in \mathbb{D} .

$$\begin{array}{ccc} T_P & \xrightarrow{\text{id}} & T_P \\ \pi_A \downarrow & \pi_P & \downarrow \pi_B \\ A & \xrightarrow[p]{} & B \end{array}$$

Example: If a restriction category \mathbb{C} admits
 splittings of restriction idempotents, then
 $\mathbb{R}(C)$ admits tabulators. In $\mathbb{P}\text{ar}$ we have:

$$\begin{array}{ccccc} X & \xleftarrow{1} & X & \xrightarrow{1} & X \\ i \downarrow & & \downarrow 1 & & \downarrow f \\ A & \xleftarrow[i]{} & X & \xrightarrow[f]{} & B \end{array}$$

LIMITS INDEXED BY LOOSE DISTRIBUTORS

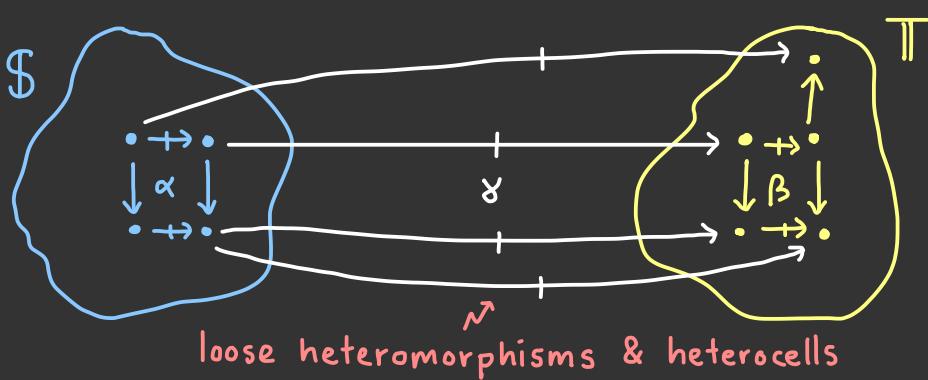
LOOSE DISTRIBUTORS

A loose distributor $(\mathbb{J}, Q): \mathbb{S} \dashrightarrow \mathbb{T}$ is a strict functor $Q: \mathbb{J} \rightarrow \mathcal{P}_\ell = \{0 \leftrightarrow 1\}$ such that $Q^{-1}\{0\} = \mathbb{S}$ and $Q^{-1}\{1\} = \mathbb{T}$.

$$\begin{array}{ccccc} \mathbb{S} & \xrightarrow{\quad} & \mathbb{J} & \xleftarrow{\quad} & \mathbb{T} \\ \downarrow ! & \lrcorner & \downarrow Q & \lrcorner & \downarrow ! \\ 1 & \xrightarrow{\quad} & \mathcal{P}_\ell & \xleftarrow{\quad} & 1 \end{array}$$

$\downarrow s \qquad \qquad \qquad \downarrow t$

Picture to have in mind:



Double category $\mathbb{D} \rightsquigarrow \text{Hom}$ loose distributor
 $\text{Hom}: \mathbb{D} \dashrightarrow \mathbb{D}$ determined by $\pi: \mathbb{D} \times \mathcal{P}_\ell \rightarrow \mathcal{P}_\ell$.

An alteration Φ with frame

$$\begin{array}{ccc} \mathbb{S} & \xrightarrow{\quad (\mathbb{J}, Q) \quad} & \mathbb{T} \\ \downarrow F & \Phi & \downarrow G \\ \mathbb{S}' & \xrightarrow{\quad \quad \quad} & \mathbb{T}' \\ & \xrightarrow{\quad (\mathbb{J}', Q') \quad} & \end{array}$$

F, G normal lax functors

is a normal lax functor $\Phi: \mathbb{J} \rightarrow \mathbb{J}'$ s.t.

$$\begin{array}{ccc} \mathbb{S} & \xrightarrow{\quad} & \mathbb{J} & \xleftarrow{\quad} & \mathbb{T} \\ \downarrow F & & \downarrow \Phi & & \downarrow G \\ \mathbb{S}' & \xrightarrow{\quad} & \mathbb{J}' & \xleftarrow{\quad} & \mathbb{T}' \\ \downarrow ! & & \downarrow Q' & & \downarrow ! \\ 1 & \xrightarrow{\quad} & \mathcal{P}_\ell & \xleftarrow{\quad} & 1 \end{array} = \begin{array}{ccccc} \mathbb{S} & \xrightarrow{\quad} & \mathbb{J} & \xleftarrow{\quad} & \mathbb{T} \\ \downarrow ! & & \downarrow Q & & \downarrow ! \\ 1 & \xrightarrow{\quad} & \mathcal{P}_\ell & \xleftarrow{\quad} & 1 \end{array}$$

LIMITS INDEXED BY LOOSE DISTRIBUTORS

12

Suppose $(\lim F, \varphi)$ and $(\lim G, \psi)$ are limits of

$F: \mathbb{S} \rightarrow \mathbb{D}$ and $G: \mathbb{T} \rightarrow \mathbb{D}$. A limit of an alteration

$$\begin{array}{ccc} \mathbb{S} & \xrightarrow{(\mathbb{T}, Q)} & \mathbb{T} \\ F \downarrow & \bar{\Phi} & \downarrow G \\ \mathbb{D} & \xrightarrow[\text{Hom}]{} & \mathbb{D} \end{array}$$

is a loose morphism $\lim \bar{\Phi}: \lim F \rightarrow \lim G$ in \mathbb{D}

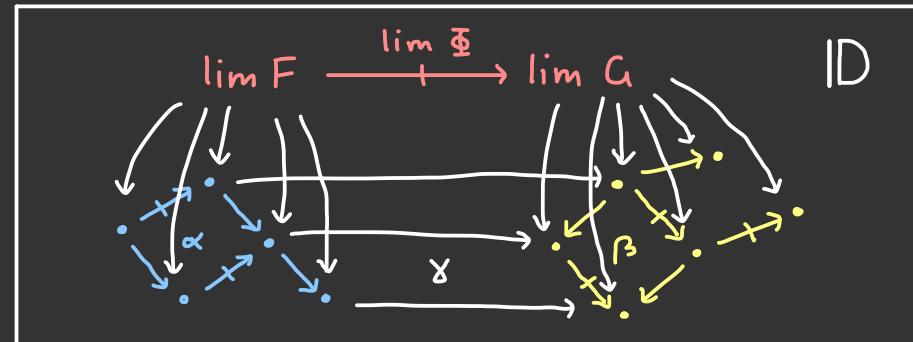
and a terminal cone Θ which provides a cell

Θ_p in \mathbb{D} for each heteromorphism $p: A \rightarrow B$ in \mathbb{T}

+ axioms.

$$\begin{array}{ccc} \lim F & \xrightarrow{\lim \bar{\Phi}} & \lim G \\ \varphi_A \downarrow & \Theta_p & \downarrow \psi_B \\ FA & \xrightarrow{\bar{\Phi}_p} & GB \end{array}$$

Picture to have in mind:



Note: F and G could coincide / overlap.

An alteration $\bar{\Phi}: \mathbb{T} \rightarrow \mathbb{D} \times \mathbb{2}_\ell$ is same as a span

$$\begin{array}{ccc} \mathbb{T} & \xrightarrow{Q} & \mathbb{D}_\ell \\ \bar{\Phi} \downarrow & \Leftrightarrow & \downarrow \lim: \lim F \rightarrow \lim G \\ \mathbb{D} & & \end{array}$$

and its limit is a pointwise right extension in $\mathbf{Dbl}_{\mathbf{ne}}$; i.e. pullback along $s, t: \mathbb{1} \rightarrow \mathbb{2}_\ell$ yields limit cones.

COMPANIONS & CONJOINTS

13

A **companion** is a limit of the alteration:

$$\begin{array}{ccc}
 \mathbb{1} & \xrightarrow{\text{H}} & \mathbb{1} \\
 f \downarrow & & \downarrow B \\
 \mathbb{1} & \xrightarrow[\text{Hom}]{} & \mathbb{1}
 \end{array}
 \rightsquigarrow
 \boxed{
 \begin{array}{ccc}
 A & & \\
 \downarrow f & & \\
 B & \xrightarrow{\text{id}} & B
 \end{array}
 }$$

The limit is a loose morphism $f_*: A \rightarrow B$

and a cell:

$$\begin{array}{ccc}
 A & \xrightarrow{f_*} & B \\
 f \downarrow & \pi & \downarrow 1_B \\
 B & \xrightarrow{\text{id}} & B
 \end{array}
 \quad + \text{U.P.}$$

Example: $\mathbb{R}(\mathcal{C})$ admits all companions since each total morphism is a morphism.

In $\mathbb{I}\text{Par}$, the companion of $f:A \rightarrow B$ is

$$A \xleftarrow{1_A} A \xrightarrow{f} B$$

A **conjoint** is a limit of the alteration:

$$\begin{array}{ccc}
 \mathbb{1} & \xrightarrow{\text{H}} & \mathbb{1} \\
 \downarrow B & & \downarrow f \\
 \mathbb{1} & \xrightarrow[\text{Hom}]{} & \mathbb{1}
 \end{array}
 \rightsquigarrow
 \boxed{
 \begin{array}{ccc}
 A & & \\
 f \downarrow & & \\
 B & \xrightarrow{\text{id}} & B
 \end{array}
 }$$

The limit is a loose morphism $f^*: B \rightarrow A$

and a cell:

$$\begin{array}{ccc}
 B & \xrightarrow{f^*} & A \\
 1_B \downarrow & \pi & \downarrow f \\
 B & \xrightarrow{\text{id}} & B
 \end{array}
 \quad + \text{U.P.}$$

Example: In $\mathbb{R}(\mathcal{C})$, the conjoint of a total morphism $f:A \rightarrow B$ is a morphism $f^*: B \rightarrow A$ such that $f \circ f^* = \overline{f^*}$ and $f^* \circ f = 1_A$.

In $\mathbb{I}\text{Par}$, these are the injective functions.

PARALLEL LIMITS

A parallel product is a limit of the alteration:

$$\begin{array}{ccc}
 \mathbb{1} + \mathbb{1} & \xrightarrow[\mathbb{H}]{\text{Hom}} & \mathbb{1} + \mathbb{1} \\
 \{\mathbb{A}, \mathbb{C}\} \downarrow & & \downarrow \{\mathbb{B}, \mathbb{D}\} \\
 \mathbb{1}\mathbb{D} & \xrightarrow[\mathbb{H}]{\text{Hom}} & \mathbb{1}\mathbb{D}
 \end{array}
 \quad \rightsquigarrow \quad
 \boxed{\begin{array}{ccc}
 \mathbb{A} & \xrightarrow[\mathbb{P}]{\quad\quad} & \mathbb{B} \\
 & \downarrow & \\
 \mathbb{C} & \xrightarrow[\mathbb{q}]{\quad\quad} & \mathbb{D}
 \end{array}}$$

The limit is a loose morphism $p \times q: A \times C \rightarrow B \times D$ together with projection cells

$$\begin{array}{ccc}
 A \times C & \xrightarrow[\mathbb{P} \times \mathbb{q}]{\quad\quad} & B \times D \\
 \pi_A \downarrow & \quad \quad \quad \downarrow \pi_B & \\
 A & \xrightarrow[\mathbb{P}]{\quad\quad} & B
 \end{array}
 \quad
 \begin{array}{ccc}
 A \times C & \xrightarrow[\mathbb{P} \times \mathbb{q}]{\quad\quad} & B \times D \\
 \pi_C \downarrow & \quad \quad \quad \downarrow \pi_D & \\
 C & \xrightarrow[\mathbb{q}]{\quad\quad} & D
 \end{array}$$

satisfying an appropriate universal property.

A parallel terminal object is a limit of the unique alteration from $\emptyset \xrightarrow[\mathbb{H}]{\text{Hom}} \emptyset$.

Prop: $\mathbb{R}(\mathcal{C})$ admits ^{finite} parallel products and a parallel terminal object if and only if \mathcal{C} is a cartesian restriction category.

In this case, $\mathbb{R}(\mathcal{C})$ is a cartesian monoidal double category.

In general, a tight parallel limit is a limit whose shape is $\mathbb{T}\mathbb{I}_i(\mathcal{J}) \xrightarrow[\mathbb{H}]{\text{Hom}} \mathbb{T}\mathbb{I}_i(\mathcal{J})$.

Example: $\mathbb{I}\mathbb{P}\mathbb{A}\mathbb{R}$ admits all tight parallel limits.

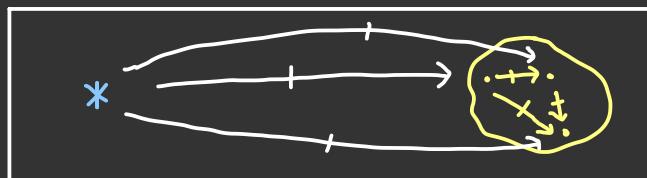
RESTRICTION LIMITS AS DOUBLE-CATEGORICAL LIMITS

15

\mathcal{C} category $\rightsquigarrow \text{ILo}(\mathcal{C})$ double category whose:

- objects and loose morphisms determined by \mathcal{C} ;
- tight morphisms and cells are identities.

There is a loose distributor $\mathbb{1}\mathbb{L} \xrightarrow{!^*} \text{ILo}(\mathcal{J})$



A unique loose heteromorphism for each object in \mathcal{C} + a unique heterocell for each loose morphism in \mathcal{C} .

$$\begin{array}{ccc} \mathbb{1}\mathbb{L} & \xrightarrow{!^*} & \text{ILo}(\mathcal{J}) \\ X \downarrow & \Phi & \downarrow F \\ \mathbb{R}(\mathcal{C}) & \xrightarrow{\text{Hom}} & \mathbb{R}(\mathcal{C}) \end{array}$$

F strict,

Φ normal colax

An alteration $\bar{\Phi}$ is precisely a lax cone over a functor $F: \mathcal{J} \rightarrow \mathcal{C}$.

$$\begin{array}{ccc} X & \xrightarrow{\Phi_B} & FB \\ 1_X \downarrow & \gtrless & \downarrow 1_{FB} \\ X & \xrightarrow{\Phi_A} FA & \xrightarrow{Ff} FB \end{array} \quad \Phi_B = Ff \circ \Phi_A \circ \bar{\Phi}_B$$

and its limit is a (loose) morphism

$$X \xrightarrow{u} \lim F \text{ together with cells}$$

$$\begin{array}{ccc} X & \xrightarrow{u} & \lim F \\ 1_X \downarrow & \gtrless & \downarrow \pi_A \\ X & \xrightarrow{\Phi_A} FA & \end{array} \quad \pi_A \circ u = \Phi_A \circ \bar{u}$$

total components

satisfying a U.P. \rightsquigarrow a restriction limit!

SUMMARY & FUTURE WORK

16

- Both restriction categories and double categories are useful structures in which to study sets & partial functions.
- We showed that restriction limits are the same as certain double-categorical limits indexed by loose distributors.

$$\begin{array}{ccc} \mathbb{1} & \xrightarrow{!*} & \mathbb{L}_0(\mathcal{C}) \\ x \downarrow & \bar{\Phi} & \downarrow F \\ \mathbb{R}(\mathcal{C}) & \xrightarrow{!} & \mathbb{R}(\mathcal{C}) \end{array}$$

Hom

Many avenues for future work:

- Examine local (co)products and the relationship with join/meet restriction categories (Guo).
- Show that restriction profunctors (DeWolf, Lin) induce loose distributors.
- Characterise which double categories arise from restriction categories.
- Upcoming project in Adjoint School 2026 with Nathanael Arkor.