The right-connected completion of a double category

Bryce Clarke

Inria Saclay, Palaiseau, France bryceclarke.github.io

Catégories supérieures, polygraphes et homotopie IRIF, Université Paris-Cité 17 February 2023

Motivation

- Algebraic weak factorisation systems (AWFS) are a generalisation of orthogonal factorisation systems (OFS).
- John Bourke and Richard Garner determined a characterisation of AWFS in terms of double categories with certain properties.
- This talk focuses on one of these properties, right-connectness, where each vertical morphism has an *underlying* horizontal morphism:

• Our goal is to construct the right-connected completion of a double category, with a view towards generating new examples and a better understanding of AWFS.

The big picture

Outline of the talk

1. Introducing (right-connected) double categories

2. Algebraic weak factorisation systems

3. The right-connected completion

Part 1: Introducing (right-connected) double categories

Double categories

A double category is a (unital) pseudo category object in the 2-category CAT.

$$\mathbb{D} \qquad : \qquad \mathcal{D}_0 \xrightarrow[\leftarrow \text{cod}]{\operatorname{dom}} \mathcal{D}_1 \xleftarrow[\to]{\odot} \mathcal{D}_1 \times_{\mathcal{D}_0} \mathcal{D}_1 = \mathcal{D}_2$$

• \mathcal{D}_0 - the category of objects and horizontal morphisms;

• \mathcal{D}_1 - the category of vertical morphisms and cells;

$$\begin{array}{ccc} A & \stackrel{h}{\longrightarrow} & C \\ f \downarrow & \alpha & \downarrow g \\ B & \stackrel{k}{\longrightarrow} & D \end{array}$$

Right-connected double categories

A double category is right-connected if its identity-assigning map is *right adjoint* to its codomain-assigning map.

For every vertical morphism $f: A \rightarrow B$, there is a *underlying* horizontal morphism $Uf: A \rightarrow B$ together with a universal cell ρ_f :

$$\begin{array}{cccc} A & \stackrel{h}{\longrightarrow} & C & & A & \stackrel{Uf}{\longrightarrow} & B & \stackrel{k}{\longrightarrow} & C \\ f \downarrow & \forall \alpha & \downarrow \operatorname{id}_{C} & \stackrel{\exists !}{=} & f \downarrow & \rho_{f} & \downarrow \operatorname{id}_{B} & \operatorname{id}_{k} & \downarrow \operatorname{id}_{C} \\ B & \stackrel{}{\longrightarrow} & C & & B & \stackrel{}{\longrightarrow} & B & \stackrel{}{\longrightarrow} & C \end{array}$$

Unitary double functors

Horizontal transformations

The 2-category of (right-connected) double categories

Let $\mathcal{D}BL$ denote the 2-category whose:

- objects are double categories;
- morphisms are unitary double functors;
- 2-cells are horizontal transformations.

Let $\Re c \mathcal{D}BL$ denote the restriction of $\mathcal{D}BL$ to the right-connected double categories.

Our goal of the talk is to construct a right 2-adjoint to the 2-functor:

$$\mathfrak{Rc}\mathfrak{DBL} \longrightarrow \mathfrak{DBL}$$

... but first, some examples!

Example: The double category of squares

Let $\mathbb{Sq}(\mathbb{C})$ denote the *double category of (commutative) squares* in a category \mathbb{C} .

- objects are given by the objects in C;
- horizontal and vertical morphisms are given by the morphisms in C;
- cells are given by the commutative squares in \mathcal{C} .

Right-connectedness of Sq(C) is given by the unique factorisation:

A canonical forgetful double functor

Given a right-connected double category $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle$ there is a double functor:

Example: The horizontal double category

Let $\mathbb{H}(\mathbb{C})$ denote the *horizontal double category* of a category \mathbb{C} , obtained by restricting the vertical morphisms in $\mathbb{S}q(\mathbb{C})$ to the identities — it is also right-connected.

Generalising, let \mathcal{C} be a category equipped with a wide subcategory \mathcal{W} . Then there is a right-connected double category $\mathbb{Sq}(\mathcal{C}, \mathcal{W})$ whose:

- objects and horizontal morphisms are given by C;
- vertical morphisms are given by W;
- cells are given by the commutative squares in C.

An adjoint triple

We may define the following 2-functors:

- Obj: $\Re c \mathcal{D}BL \to CAT$, $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle \mapsto \mathcal{D}_0$.
- $Sq: CAT \to \mathcal{R}c\mathcal{D}BL, \quad \mathcal{C} \mapsto Sq(\mathcal{C}).$
- $\mathbb{H}: \mathbb{C}AT \to \mathcal{R}c\mathcal{D}BL, \quad \mathbb{C} \mapsto \mathbb{H}(\mathbb{C}).$

There is an adjoint triple of 2-functors:

$$\begin{array}{c} \overset{\mathbb{H}}{\overset{\bot}{\longrightarrow}} \\ \mathcal{R}c\mathcal{D}BL & \longrightarrow \mathcal{O}bj \rightarrow \mathcal{C}AT \\ \xleftarrow{\bot}{\mathbb{S}q} \end{array}$$

The double functor $U \colon \mathbb{D} \to \mathbb{S}q(\mathcal{D}_0)$ is the component at \mathbb{D} of the unit of $Obj \dashv \mathbb{S}q$.

Example: The double category of split epimorphisms

Let SEpi(C) denote the *double category of split epimorphisms* in C.

- objects and horizontal morphisms are given by C;
- vertical morphisms are split epimorphisms in C;
- cells are given by diagrams in $\ensuremath{\mathbb{C}}$

$$\begin{array}{c}
A \xrightarrow{h} C \\
\varphi^{\uparrow} \downarrow_{f} \psi^{\uparrow} \downarrow_{g} \\
B \xrightarrow{k} D
\end{array}$$

such that $k \circ f = g \circ h$ and $h \circ \varphi = \psi \circ k$.

Right-connectedness:

$$A \xrightarrow{h} C$$

$$\varphi \uparrow \downarrow_{f} 1_{C} \uparrow \downarrow_{1_{C}} =$$

$$B \xrightarrow{k} C$$

$$A \xrightarrow{f} B \xrightarrow{k} C$$

$$\varphi \uparrow \downarrow_{f} 1_{B} \uparrow \downarrow_{1_{B}} 1_{C} \uparrow \downarrow_{1_{C}}$$

$$B \xrightarrow{k} C$$

Digression: Delta lenses and split opfibrations

A delta lens is a functor $f: A \rightarrow B$ equipped with a lifting operation φ

$$\begin{array}{ccc} A & a \xrightarrow{\varphi(a,u)} p(a,u) \\ f & \vdots & \vdots \\ B & fa \xrightarrow{u} b \end{array}$$

where $p(a, u) \coloneqq cod(\varphi(a, u))$, satisfying the following three axioms:

- 1. $f\varphi(a, u) = u$,
- 2. $\varphi(a, 1_{fa}) = 1_{a}$,
- 3. $\varphi(a, v \circ u) = \varphi(p(a, u), v) \circ \varphi(a, u).$

A split opfibration is a delta lens such that the chosen lifts $\varphi(a, u)$ are opcartesian.

Example: The double category of delta lenses / split opfibrations

Let $\mathbb{L}ens$ denote the right-connected *double category of delta lenses* whose:

- objects are categories;
- horizontal morphisms are functors;
- vertical morphisms are delta lenses;
- cells are "compatible" squares

$$\begin{array}{c} A \xrightarrow{h} C \\ (f,\varphi) \downarrow & \downarrow (g,\gamma) \\ B \xrightarrow{k} D \end{array}$$

such that $g \circ h = k \circ f$ and $h\varphi(a, u) = \gamma(ha, ku)$ for all $(a \in A, u: fa \to b \in B)$. Let \mathbb{SOpf} be the restriction of $\mathbb{L}ens$ to vertical morphisms which are split opfibrations.

Part 2: Algebraic weak factorisation systems

Algebraic weak factorisation systems (AWFS)

An algebraic weak factorisation system (L, R) on a category \mathcal{C} consists of:

• A functorial factorisation on C;

• A comonad (L, ϵ, Δ) and a monad (R, η, μ) on $\mathbb{C}^2 = \mathrm{Sq}(\mathbb{C})$;

• A distributive law $\delta: LR \Rightarrow RL$ of the comonad L over the monad R.

Lifting of coalgebras against algebras

Consider the *L*-coalgebra $\mathbf{f} = (f, s)$ and the *R*-algebra $\mathbf{g} = (g, p)$.

$$A = A = A = A \qquad A = A \qquad A = A \qquad C \xrightarrow{1_A} C \qquad C \xrightarrow{L_g} Eg \xrightarrow{p} C$$

$$f \downarrow \qquad \downarrow_{Lf} \qquad \downarrow_f \qquad \downarrow_f \qquad g \downarrow \qquad \downarrow_g = g \downarrow \qquad \downarrow_{Rg} \qquad \downarrow_g$$

$$B \xrightarrow{s} Ef \xrightarrow{Rf} B \qquad B \xrightarrow{1_B} B \qquad D = D \qquad D = D$$

We may construct a canonical diagonal filler $\varphi_{\mathbf{f},\mathbf{g}}(h,k)$ for each commutative square:

The double category of *R*-algebras

Given an AWFS (L, R) on \mathcal{C} , there is a right-connected double category R-Alg whose:

- objects and horizontal morphisms come from the category C;
- vertical morphisms and cells come from the category of algebras *R*-Alg.

The *R*-algebra structure on *h* is given by $\varphi_{\mathsf{Lh},\mathsf{f}}(1_A, \varphi_{\mathsf{Lh},\mathsf{g}}(f, Rh))$: $Eh \to A$.

Right-connected double categories arising from AWFS

1. The double cat. $Sq(\mathcal{C}, \mathcal{R})$, for an orthogonal factorisation system $(\mathcal{L}, \mathcal{R})$ on \mathcal{C} ;

2. The double cat. $SOpf \cong R$ -Alg with AWFS constructed using comma categories.

More right-connected double categories arising from AWFS

3. If \mathcal{C} has coproducts, then $\mathbb{S}Epi(\mathcal{C}) \cong R\text{-}Alg$ with AWFS given by:

4. Lens \cong *R*-Alg with AWFS given by:

The Bourke-Garner characterisation theorem

Let $\mathcal{A}WFS_{lax}$ denote the 2-category of AWFS and *lax morphisms*.

Bourke and Garner (2016): the 2-functor (-)-Alg has in its essential image exactly those right-connected double categories $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle$ for which the canonical forgetful functor $U_1: \mathcal{D}_1 \to Sq(\mathcal{D}_0)$ is strictly monadic. Part 3: The right-connected completion

The vertical double category

Let $\mathbb{V}(\mathbb{C})$ denote the vertical double category of a category \mathbb{C} , obtained by restricting the horizontal morphisms in $\mathbb{S}q(\mathbb{C})$ to the identities — this is *not* right-connected, but does yield a 2-functor $\mathbb{V}: \mathbb{C}AT_1 \to \mathcal{D}BL$ from the *locally discrete* 2-category $\mathbb{C}AT_1$.

Question: Does there exist an absolute left Kan lift of \mathbb{V} along $\mathcal{R}c\mathcal{D}BL \hookrightarrow \mathcal{D}BL$?

The "free" right-connected double category

Let $\mathbb{R}c(\mathbb{C})$ denote *free right-connected double category* on $\mathbb{V}(\mathbb{C})$ for a category \mathbb{C} , obtained by restricting the (non-identity) cells in $\mathbb{S}q(\mathbb{C})$ to those of the form:

$$\begin{array}{ccc}
A & \stackrel{f}{\longrightarrow} & B \\
f & & \downarrow^{1_B} \\
B & \stackrel{1_B}{\longrightarrow} & B
\end{array}$$

Chasing isomorphisms of hom-categories

Recall that our goal is to construct a right 2-adjoint Γ , called the right-connected completion of a double category:

If $\ensuremath{\mathbb{\Gamma}}$ exists, then we have a natural isomorphism of hom-categories:

 $\mathcal{R}c\mathcal{D}BL(\mathbb{C},\mathbb{\Gamma}(\mathbb{D}))\cong\mathcal{D}BL(\mathbb{C},\mathbb{D})$

From the relative 2-adjunction on the previous slide there is a natural isomorphism:

 $\mathcal{R}c\mathcal{D}BL(\mathbb{R}c(\mathcal{C}),\mathbb{D})\cong\mathcal{D}BL(\mathbb{V}(\mathcal{C}),\mathbb{D})$

Combining these isomorphisms, we have the following:

 $\mathcal{D}\mathrm{BL}\big(\mathbb{V}(\mathcal{C}),\mathbb{\Gamma}(\mathbb{D})\big)\cong \mathcal{R}\mathrm{c}\mathcal{D}\mathrm{BL}\big(\mathbb{R}\mathrm{c}(\mathcal{C}),\mathbb{\Gamma}(\mathbb{D})\big)\cong \mathcal{D}\mathrm{BL}\big(\mathbb{R}\mathrm{c}(\mathcal{C}),\mathbb{D}\big)$

The right-connected completion, abstractly

For any double category $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle$, there exists canonical isomorphisms

 $\mathcal{D}_{0} \cong \mathcal{D}\mathrm{BL}\big(\mathbb{V}(1), \mathbb{D}\big) \qquad \qquad \mathcal{D}_{1} \cong \mathcal{D}\mathrm{BL}\big(\mathbb{V}(2), \mathbb{D}\big)$

where $\mathbf{1}$ is the *terminal category*, and $\mathbf{2} = \{0 \rightarrow 1\}$ is the *interval category*.

The right-connected completion $\Gamma(\mathbb{D}) = \langle \Gamma_0(\mathbb{D}), \Gamma_1(\mathbb{D}) \rangle$ of a double category $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle$ is determined by the following isomorphisms:

 $\Gamma_0(\mathbb{D})\cong \mathcal{D}\mathrm{BL}\big(\mathbb{R}\mathrm{c}(1),\mathbb{D}\big)\cong \mathcal{D}_0 \qquad \qquad \Gamma_1(\mathbb{D})\cong \mathcal{D}\mathrm{BL}\big(\mathbb{R}\mathrm{c}(2),\mathbb{D}\big)$

Therefore, the objects and horizontal morphisms of $\Gamma(\mathbb{D})$ are given by those of \mathbb{D} . What are the vertical morphisms and cells?

The right-connected completion, concretely

A vertical morphism in the right-connected completion $\mathbb{T}(\mathbb{D})$ is given by a unitary double functor $\mathbb{R}c(2) \to \mathbb{D}$ which is determined by a triple:

$$\begin{array}{cccc} A & & A \xrightarrow{f'} B \\ (f, f', \alpha) \downarrow & & & f \downarrow & \alpha & \downarrow \operatorname{id}_{E} \\ B & & & B \xrightarrow{1_{B}} B \end{array}$$

A cell in $\Gamma(\mathbb{D})$ is given by a horizontal transformation $(f, f', \alpha) \Rightarrow (g, g', \beta)$ of unitary double functors $\mathbb{R}c(2) \rightarrow \mathbb{D}$ which is determined by a cell θ in \mathbb{D} such that:

$$\begin{array}{ccccc} A & \stackrel{h}{\longrightarrow} & C & \stackrel{g'}{\longrightarrow} & D & & & A & \stackrel{f'}{\longrightarrow} & B & \stackrel{k}{\longrightarrow} & D \\ f \downarrow & \theta & \downarrow g & \beta & \downarrow \operatorname{id}_{D} & = & & f \downarrow & \alpha & \operatorname{id}_{B} \downarrow & \operatorname{id}_{k} & \downarrow \operatorname{id}_{D} \\ B & \stackrel{k}{\longrightarrow} & D & \stackrel{1}{\longrightarrow} & D & & & B & \stackrel{h}{\longrightarrow} & B & \stackrel{k}{\longrightarrow} & D \end{array}$$

Vertical composition in $\mathbb{T}(\mathbb{D})$

A composable pair of vertical morphisms in $\mathbb{T}(\mathbb{D})$ is given by a strict double functor $\mathbb{R}c(3) \to \mathbb{D}$, and vertical composition is determined by pre-composing with the double functor $\mathbb{R}c(d_1) \colon \mathbb{R}c(2) \to \mathbb{R}c(3)$:

Altogether, there is a well-defined right-connected double category $\mathbb{T}(\mathbb{D})$.

Another canonical forgetful double functor

Given a double category $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle$ there is a double functor:

The right-connected completion as a right 2-adjoint

Let $\Gamma: \mathcal{DBL} \to \mathcal{R}c\mathcal{D}BL$ denote the 2-functor which assigns a double category \mathbb{D} to its right-connected completion $\Gamma(\mathbb{D})$.

The double functor $V : \Gamma(\mathbb{D}) \to \mathbb{D}$ is the component at \mathbb{D} of the counit of the 2-adjunction, while the unit is an isomorphism.

Example: The codiscrete double category

Let $\mathbb{K}(\mathbb{C})$ denote the *codiscrete double category* of a category \mathbb{C} whose:

- objects and horizontal morphisms come from C;
- vertical morphisms and cells come from $\mathcal{C} \times \mathcal{C}$.

This defines a 2-functor $\mathbb{K} \colon CAT \to \mathcal{D}BL$ which is right adjoint to Obj: $\mathcal{D}BL \to CAT$.

The double functor $\mathbb{D} \to \mathbb{K}(\mathcal{D}_0)$ is sent to the double functor $U \colon \Gamma(\mathbb{D}) \to \mathbb{S}q(\mathcal{D}_0)$.

Example: The vertical dual of Sq(C)

Let $\mathbb{Sq}(\mathbb{C})^{\vee}$ denote the *vertical dual* of $\mathbb{Sq}(\mathbb{C})$, obtained by swapping the functors dom, cod: $\mathbb{Sq}(\mathbb{C}) \to \mathbb{C}$ of the internal category corresponding to $\mathbb{Sq}(\mathbb{C})$.

There is an isomorphism $\Gamma(\mathbb{Sq}(\mathcal{C})^{\vee}) \cong \mathbb{SEpi}(\mathcal{C})$. A vertical morphism in $\Gamma(\mathbb{Sq}(\mathcal{C})^{\vee})$ is precisely a split epimorphism.

$$\begin{array}{ccc}
A & \stackrel{f}{\longrightarrow} & B \\
\varphi \uparrow & & \uparrow^{1_B} \\
B & \stackrel{I_B}{\longrightarrow} & B
\end{array}$$

Example: The double category of pushout squares

Let $\mathbb{P}_{0}(\mathbb{C})$ denote the *double category of pushout squares* in a category $\overline{\mathbb{C}}$, obtained by restricting the cells in $\mathbb{S}q(\mathbb{C})$ to those which are pushouts.

$$\begin{array}{ccc} A & \stackrel{h}{\longrightarrow} & C \\ \downarrow & & \downarrow \\ B & \stackrel{\neg}{\longrightarrow} & D \end{array}$$

A vertical morphism in $\Gamma(\mathbb{P}o(\mathbb{C}))$ is an epimorphism.

$$\begin{array}{ccc} A \xrightarrow{e} B \\ e \downarrow & & \downarrow^{1_B} \\ B \xrightarrow{-1_B} B \end{array}$$

Example: The double category of spans

Let Span denote the double category of sets, functions, and spans of functions.

A vertical morphism in $\Gamma(Span)$ is a composable pair of functions, while a vertical morphism in $\Gamma(Span^{h})$ is a split multi-valued function.

Example: Double categories from 2-categories

Let $\mathbb{Q}(\mathcal{K})$ denote the *double category of quintets* of a 2-category \mathcal{K} , whose cells are:

$$\begin{array}{ccc} A & \stackrel{h}{\longrightarrow} & C \\ f \downarrow & \stackrel{\alpha}{\Longrightarrow} & \downarrow^{g} \\ B & \stackrel{k}{\longrightarrow} & D \end{array}$$

A vertical morphism in $\Gamma(\mathbb{Q}(\mathcal{K}))$ is simply a 2-cell $\alpha \colon f \Rightarrow g$ in \mathcal{K} .

$$\begin{array}{ccc} A \xrightarrow{g} & B \\ f \downarrow & \stackrel{\alpha}{\Longrightarrow} & \downarrow^{1_{B}} \\ B \xrightarrow{1_{B}} & B \end{array}$$

Vertical morphisms in $\Gamma(\mathbb{H}(\mathcal{K}))$ and $\Gamma(\mathbb{V}(\mathcal{K}))$ are pointed and copointed endomorphisms, respectively.

Example: The double category of adjunctions

Let $\operatorname{Adj}(\mathcal{K})$ denote the double category of adjunctions in a 2-category \mathcal{K} .

$$A \xrightarrow{h} C$$

$$r_1 \uparrow \vdash \downarrow_{\ell_1} \quad r_2 \uparrow \vdash \downarrow_{\ell_2} \qquad k \circ \ell_1 = \ell_2 \circ h \qquad h \circ r_1 = r_2 \circ k$$

$$B \xrightarrow{k} D$$

A vertical morphism in $\mathbb{P}(\mathbb{A}dj(\mathcal{K}))$ is a 1-cell $\ell: A \to \overline{B}$ equipped with a right-adjoint right-inverse (*rari*) $r: B \to A$. If \mathcal{K} has cocomma objects, then $\mathbb{P}(\mathbb{A}dj(\mathcal{K})) \cong R$ -Alg for an AWFS.

$$\begin{array}{c} A \xrightarrow{h} B \\ r \uparrow \vdash \downarrow_{\ell} 1_{B} \uparrow \vdash \downarrow_{1_{B}} \\ B \xrightarrow{1_{B}} B \end{array} \qquad \ell \circ r = 1_{B} \end{array}$$

Digression: Cofunctors

A cofunctor $\varphi: A \to B$ consists of an object assignment $\varphi_0: A_0 \to B_0$ together with a lifting operation

where $p(a, u) := cod(\varphi(a, u))$, satisfying the following three axioms:

- 1. $\varphi_0 p(a, u) = \operatorname{cod}(u)$,
- 2. $arphi(a,1_{arphi_0a})=1_a$,
- 3. $\varphi(a, v \circ u) = \varphi(p(a, u), v) \circ \varphi(a, u).$

Every delta lens $(f, \varphi) \colon A \to B$ has an underlying cofunctor $\varphi \colon A \to B$.

Example: The double category of cofunctors

Let Cof denote the *double category of cofunctors* whose:

- objects are categories;
- horizontal morphisms are functors;
- vertical morphisms are cofunctors;
- cells are compatible squares

$$\begin{array}{cccc}
A & \stackrel{h}{\longrightarrow} & C \\
\varphi \downarrow & & \downarrow \\
B & \stackrel{}{\longrightarrow} & D
\end{array}$$

s.t. $\gamma_0 h(a) = k\varphi_0(a)$ and $h\varphi(a, u) = \gamma(ha, ku)$ for all $(a \in A, u : \varphi_0 a \to b \in B)$. Then $\Gamma(\mathbb{C}of) \cong \mathbb{L}ens$, and a delta lens is compatible functor and cofunctor pair.

Summary of the talk

$$\operatorname{Rc}\mathcal{D}\operatorname{BL} \xleftarrow{\bot}_{\Gamma} \mathcal{D}\operatorname{BL}$$

• In particular examples, we saw that the right-connected completion is isomorphic to a double category arising from an AWFS.

 $\mathbb{\Gamma}\big(\mathbb{S}q(\mathcal{C})^{\mathsf{v}}\big)\cong\mathbb{S}\mathrm{Epi}(\mathcal{C})\qquad\mathbb{\Gamma}\big(\mathbb{A}\mathrm{dj}(\mathcal{K})\big)\cong\mathbb{L}\mathrm{ali}(\mathcal{K})\qquad\mathbb{\Gamma}\big(\mathbb{C}\mathrm{of}\big)\cong\mathbb{L}\mathrm{ens}$

Further work is needed to determine conditions on D = ⟨D₀, D₁⟩ such that the functor U₁: Γ₁(D) → Sq(D₀) is strictly monadic, and corresponds to an AWFS.

Bonus: The canonical span of forgetful double fucntors

Given a double category $\mathbb{D} = \langle \mathcal{D}_0, \mathcal{D}_1 \rangle$ there is a span of double functor:

Bonus: Reinterpreting this span via a cospan

Using the canonical cospan of double functors $\mathbb{H}(\mathcal{C}) \to \mathbb{R}c(\mathcal{C}) \leftarrow \mathbb{V}(\mathcal{C})$ we have:

$$\begin{split} & \mathbb{Sq}(\mathfrak{D}_{0}) \xleftarrow{U} \mathbb{\Gamma}(\mathbb{D}) \xrightarrow{V} \mathbb{D} \\ & \mathcal{D}\mathrm{BL}(\mathbb{H}(\mathbf{2}), \mathbb{D}) \xleftarrow{U_{1}} \mathcal{D}\mathrm{BL}(\mathbb{R}\mathrm{c}(\mathbf{2}), \mathbb{D}) \xrightarrow{V_{1}} \mathcal{D}\mathrm{BL}(\mathbb{V}(\mathbf{2}), \mathbb{D}) \\ & \mathrm{dom} \Big| \stackrel{\uparrow}{\underset{l}{\mathrm{id}}} \Big|_{\mathrm{cod}} \operatorname{dom} \Big| \stackrel{\uparrow}{\underset{l}{\mathrm{id}}} \Big|_{\mathrm{cod}} \operatorname{dom} \Big| \stackrel{\uparrow}{\underset{l}{\mathrm{id}}} \Big|_{\mathrm{cod}} \\ & \mathcal{D}\mathrm{BL}(\mathbb{H}(\mathbf{1}), \mathbb{D}) \xrightarrow{\mathbb{D}\mathrm{BL}(\mathbb{R}\mathrm{c}(\mathbf{1}), \mathbb{D})} \xrightarrow{\mathbb{D}\mathrm{BL}(\mathbb{V}(\mathbf{1}), \mathbb{D})} \end{split}$$

- Under what conditions does U₁ have a left adjoint?
- <u>Answer</u>: When left Kan extensions of $\mathbb{V}(2) \to \mathbb{D}$ along $\mathbb{V}(2) \to \mathbb{R}c(2)$ in exist.
- Under what conditions is V₁ comonadic?
- <u>Answer</u>: If and only if each fibre cod⁻¹{B} of the functor cod: D₁ → D₀ admits products with the vertical identity morphism id_B: B → B.

References

- John Bourke and Richard Garner, Algebraic weak factorisation systems I: Accessible AWFS, Journal of Pure and Applied Algebra, Volume 220, 2016. doi:10.1016/j.jpaa.2015.06.002
- John Bourke and Richard Garner, Algebraic weak factorisation systems II: Categories of weak maps, Journal of Pure and Applied Algebra, Volume 220, 2016. doi:10.1016/j.jpaa.2015.06.003
- Bryce Clarke, The double category of lenses, PhD thesis, Macquarie University, 2022. doi:10.25949/22045073.v1
- Bryce Clarke, The right-connected completion of a double category, 2023. TBA!

The Eleventh Symposium on Compositional Structures (SYCO 11)

École Polytechnique, Palaiseau, France Thursday 20th - Friday 21st April 2023 **Submission deadline: 6 March 2023**

https://www.cl.cam.ac.uk/events/syco/11/