INVESTIGATING LENSES BETWEEN PREORDERED SETS

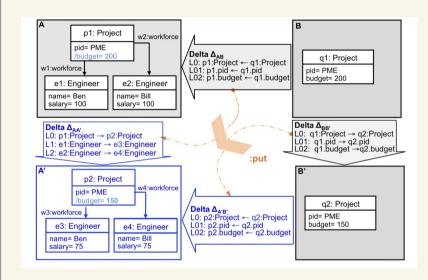
BRYCE CLARKE

Proofs and Algorithms seminar Inria Saclay / LIX, 20 June 2022

OVERVIEW OF THE TALK

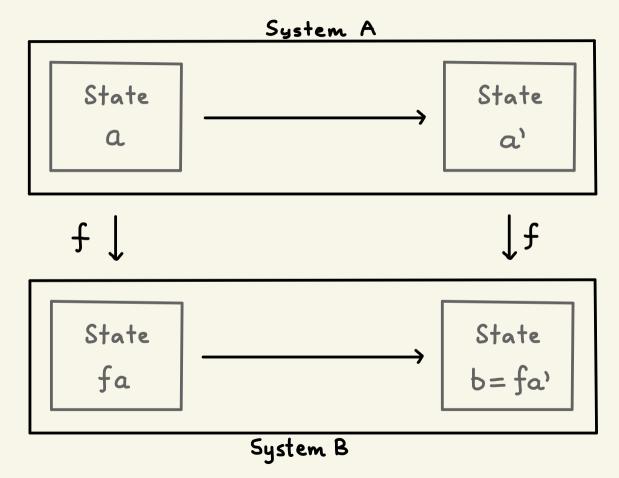
- 1. Motivation for lenses
- 2. Lenses between sets
- 3. Lenses between preordered sets
 - & investigate their properties:
 - How to compose & decompose
 - How to take intersections & glue
 - How to construct free lenses
- 4. Lenses between enriched structures

Example from model-driven engineering:



Diskin, Eramo, Pierantonio, and Czarnecki (2016).

MOTIVATION



Summary:

- · This is a simple model of a system
- We would like control over which updates are permitted
- Idea: Replace setswith preorders!

LENSES BETWEEN SETS

A lens $(f,p):A \longrightarrow B$ consists of a pair of functions, $f:A \longrightarrow B$ $p:A \times B \longrightarrow A$

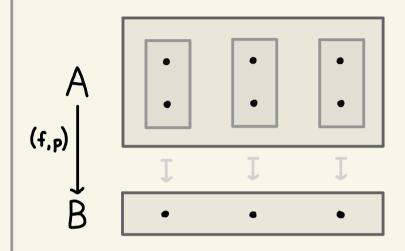
which satisfy the axioms:

(1)
$$f_{p}(a,b) = b$$

$$(2) p(a,fa) = a$$

(3)
$$p(p(a,b),b') = p(a,b')$$

Example: $(f, p): \mathbb{R}^2 \longrightarrow \mathbb{R}$ s.t. f(x,y) = y p(x,y,z) = (x,z)



Issues with lenses between sets:

- · Not always a realistic model
- · Only examples are product projections
- · Mathematically poor properties

LENSES BETWEEN PREORDERED SETS

A preordered set (A, «) is a set A equipped with a relation « which satisfies the axioms:

(Reflexivity) $x \le x$ (Transitivity) if $x \le y$ and $y \le z$,

then x \le Z

A function f:A→B between preordered sets is order preserving if x ≤ y implies fx ≤ fy.

A lens $(f,p): (A,\leq) \longrightarrow (B,\leqslant)$ consists of an order-preserving function $f:A \longrightarrow B$ and a partial function,

$$fa \leqslant b \longmapsto a \leqslant \rho(a,b)$$

which satisfy the axioms:

$$(1) f_p(a,b) = b$$

(2)
$$p(a,fa)=a$$

(3)
$$p(p(a,b),b') = p(a,b')$$

for all $fa \le b \le b'$

BASIC EXAMPLES

Addition is an order-preserving function:

$$+: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 $(x,y) \longmapsto x+y$

Three possible lens structures include:

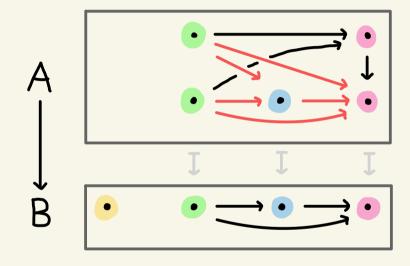
$$x+y \leqslant z \longmapsto (z-y,y)$$

$$x+y \leqslant z \longmapsto (x,z-x)$$

$$x+y \leqslant z \longmapsto \left(\frac{z+x-y}{2},\frac{z+y-x}{2}\right)$$

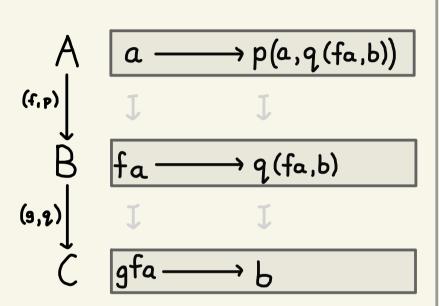
Every lens between sets is an example under the relation $x \le y$ for all (x,y).

Represent a preordered set by a graph:

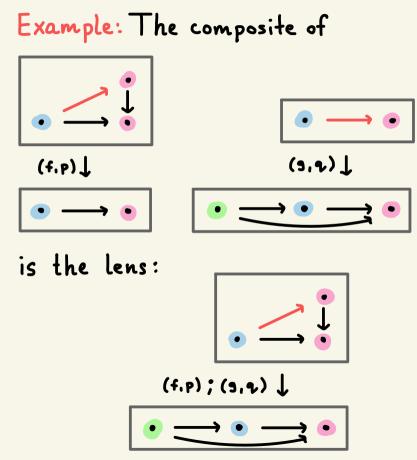


A lens lifts an arrow in the target graph B to an arrow in the source graph A.

HOW TO COMPOSE, SEQUENTIALLY?



Composition of lenses is unital and associative.

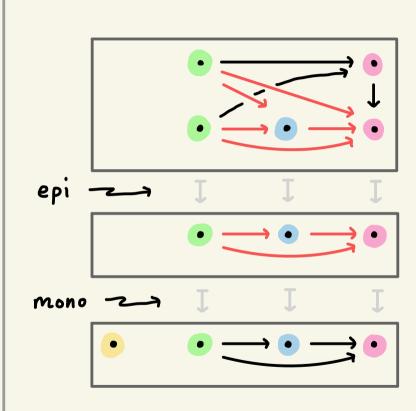


HOW TO DECOMPOSE, SEQUENTIALLY?

Every function decomposes into a surjection followed by an injection.

A lens is a (epi/mono) if its underlying function is a (surjection/injection).

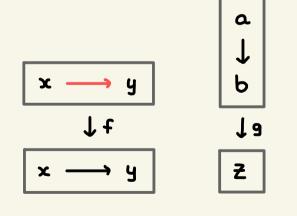
Every lens decomposes into an epi followed by a mono — this is a factorisation system on lenses.

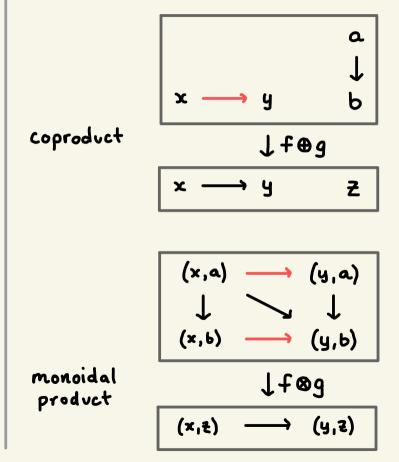


PRODUCTS & COPRODUCTS

There are at least two ways of combining lenses in parallel.

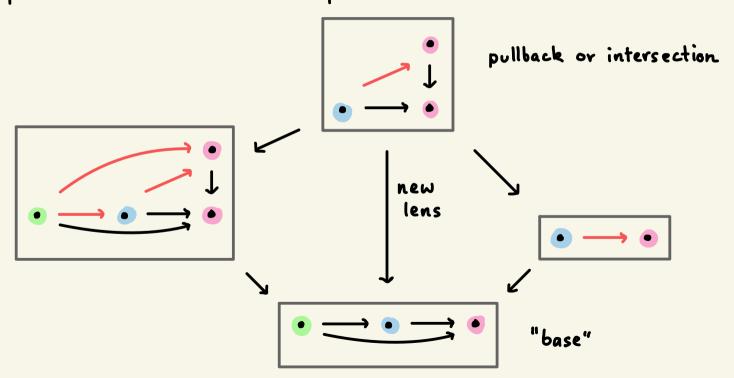
Consider the following two simple examples:





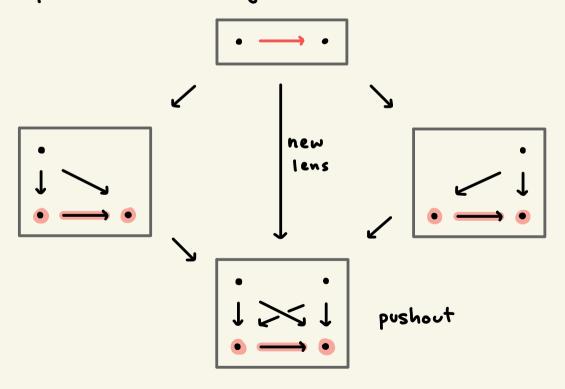
PULLBACKS

Pullbacks of lenses are akin to taking an intersection, or taking a product over some "base" preorder.



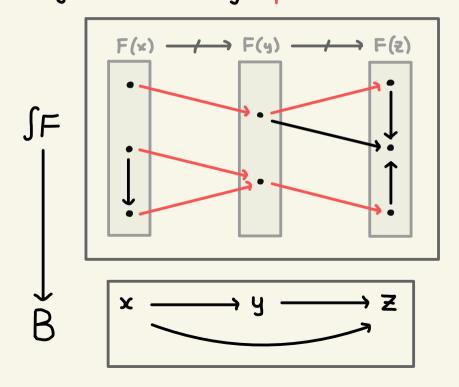
GLUING ALONG MONOS

Given a pair of monic lenses with common source, we can "glue" their target preordered sets together — this is called a pushout.



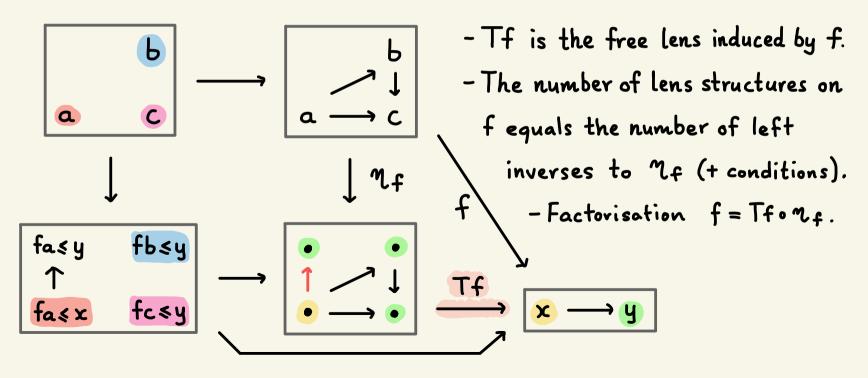
LENSES FROM MULTI-VALUED FUNCTIONS

Given a preordered set B, how may we systematically construct a lens whose target is B? Using split multi-valued functions!



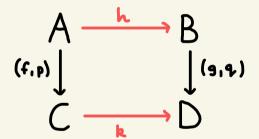
CONSTRUCTING FREE LENSES

Suppose we have an order-preserving function $f:(A,\leqslant)\longrightarrow(B,\leqslant)$; can we freely construct a lens using this data?

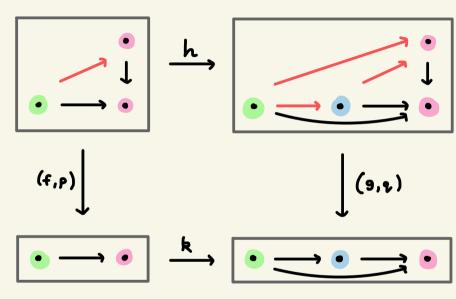


COMPARING LENSES

Suppose we have a pair of lenses, how might we compare them, or transform one into the other?



Take a pair of order-preserving functions such that $k \cdot f = g \cdot h$ and $h \cdot p(a,b) = q(ha,kb)$.



Here (h,k) includes a simple system into a more complex one while preserving the lens structure.

ENRICHMENT

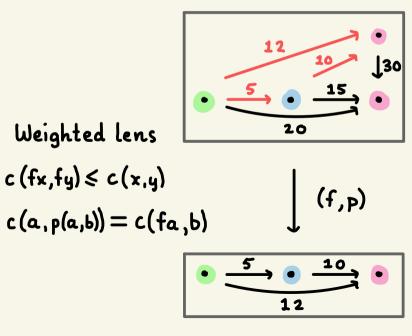
A preordered set (A, <) is a set A such that each pair x, y ∈ A is assigned a truth value:

$$(x,y) \longmapsto \begin{cases} T & \text{if } x \leq y \\ \bot & \text{otherwise} \end{cases}$$

What if we had a set of proofs instead?

structure	enrichment
preorder	A(x,y) is a truth value
category	$\underline{A}(x,y)$ is a set
metric space	$\underline{A}(x,y)$ is a real number

Example: A system has a cost associated to each transistion between states.



SUMMARY & FURTHER DIRECTIONS

- ·Lenses between preordered sets provide a versatile mathematical model for update synchronisation.
- Constructions involving lenses are developed with universal properties using tools from category theory.
- Framework for lenses naturally extends to cover more complex models via notion of enrichment.

- · Can we compute all lenses between a fixed pair of preorders?
- · How may these constructions be implemented in applications such as model-driven engineering?
- · How can the study of lenses inform our understanding of other structures in category theory?