AN INTRODUCTION TO DELTA LENSES

BRYCE CLARKE

Theoretical Cosynus Seminar Inria Saclay / LIX, 18 May 2022

A delta lens is:

- · A functor with additional structure
- · A compatible functor & cofunctor
- · A commutative triangle of functors

- · A lax double functor into SMult
- · A (co)algebra for a (co)monad
- · Right class of an A.W.F.S.

Combinators for Bi-Directional Tree Transformations A Linquistic Approach to the View Update Problem

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt University of Pennsylvania

Proceedings POPL'05

- **3.1 Definition [Lenses]:** A *lens l* comprises a partial function $l \nearrow$ from \mathcal{U} to \mathcal{U} , called the *get function* of l, and a partial function $l \searrow$ from $\mathcal{U} \times \mathcal{U}$ to \mathcal{U} , called the *putback function*.
- **3.2 Definition [Well-behaved lenses]:** Let l be a lens and let C and A be subsets of \mathcal{U} . We say that l is a well behaved lens from C to A, written $l \in C \rightleftharpoons A$, iff it maps arguments in C to results in A and vice versa

$$l \nearrow (C) \subseteq A$$
 (Get) $l \searrow (A \times C) \subseteq C$ (Put)

and its get and putback functions obey the following laws:

$$\begin{array}{l} l \searrow (l \nearrow c,\, c) \sqsubseteq c & \text{ for all } c \in C \\ l \nearrow (l \searrow (a,\, c)) \sqsubseteq a & \text{ for all } (a,c) \in A \times C & \text{ (PutGet)} \end{array}$$

We call C the source and A the target in $C \rightleftharpoons A$.

A state-based lens $A \rightleftharpoons B$ is a pair of functions, $f: A \longrightarrow B$ $p: A*B \longrightarrow A$ satisfying the axioms:

1.
$$f_{\rho}(a,b) = b$$

2.
$$p(a,fa)=a$$

3.
$$p(p(a,b),b') = p(a,b')$$

From State- to Delta-Based Bidirectional Model Transformations: the Asymmetric Case

Zinovy Diskin^a

Yingfei Xiong^a

Krzysztof Czarnecki^a

Definition 4 (delta lens). A *delta lens* is a tuple $l = (\mathbf{A}, \mathbf{B}, \mathsf{get}, \mathsf{put})$, in which \mathbf{A} and \mathbf{B} are model spaces (i.e., connected categories) called the *source* and the *target* of the lens, $\mathsf{get} \colon \mathbf{A} \to \mathbf{B}$ is a graph morphism providing \mathbf{B} -views of \mathbf{A} -models and their deltas, and $\mathsf{put} \colon \mathbf{B}_1 \times \mathbf{A}_0 \to \mathbf{A}_1$ is a function translating view deltas back to the source so that laws PutInc_1 and PutInc_2 in Fig. 9 are respected.

A delta lens is called *well-behaved* (we will write wb) if it also satisfies Getld, Putld and PutGet laws. Particularly, Getld means that get is a semi-functor.

A wb delta lens is called *very well-behaved* if it satisfies GetGet and PutPut laws. Particularly, GetGet makes get a functor.

We will write $l: \mathbf{A} \rightleftharpoons \mathbf{B}$ for a delta lens with source \mathbf{A} and target \mathbf{B} , and denote the functions by get^l and put^l . We will often write d-lens for d-lens.

	Equational laws	
	Equational laws	
(GetInc)	$\partial_{x}(a.get_1) = (\partial_{x}a).get_0,x=s,t$	
$(PutInc_1)$	$put(b,A)$ is defined iff $A.get_0 = \partial_{s} b$	(1)
$(PutInc_2)$	$\partial_{s}put(b,A)=A$	
(Getld)	$id_A.get_1 = id_B \ \ \mathrm{with} \ B \stackrel{\mathrm{def}}{=} A.get_0$	(2)
(Putld)	$id_A = put(id_B, A) \ \ \mathrm{with} \ B \stackrel{\mathrm{def}}{=} A.get_0$	(2)
(PutGet)	$(put(b,A)).get_1 = b$	(3)
(GetGet)	$(a;a').get_1 = (a.get_1);(a'.get_1)$	(4)
(PutPut)	put(b;b',A) = put(b,A); put(b',A')	(4)
	$\text{with } A' \stackrel{\text{def}}{=} \partial_{t} put(b,A)$	

A delta lens $(f, \Psi): A \rightleftharpoons B$ consists of a functor $f: A \rightarrow B$ together with a lifting operation,

$$A \quad a \xrightarrow{\varphi(a,u)} a$$

$$(f,v) \mid \qquad \vdots \qquad \qquad \vdots$$

$$B \quad fa \xrightarrow{u} b$$

satisfying the axioms:

1.
$$f \Psi(a, u) = u$$

2.
$$\Psi(a, 1_{fa}) = 1_a$$

3.
$$\Psi(a, v \cdot u) = \Psi(a', v) \cdot \Psi(a, u)$$

- · State-based lens ~ delta lens between codiscrete categories.
- Split opfibration

 delta lens
 such that Ψ(a,u) are opcartesian.
- · Discrete opfibration \simeq delta lens such that $\Psi(a,u)$ are unique.
- · Spilt epimorphism of monoids with a chosen section \simeq delta lens between monoids.

DELTA LENSES VIA COFUNCTORS

05

A cofunctor $(f, \Psi): A \longrightarrow B$ consists of a function $f: Obj(A) \longrightarrow Obj(B)$ together with a lifting operation,

$$\begin{array}{ccc}
A & a & \xrightarrow{\Psi(a,u)} & a' \\
(f,\psi) & \vdots & & \vdots \\
B & fa & \xrightarrow{u} & b
\end{array}$$

satisfying the axioms:

- 1. $f cod(\varphi(a,u)) = cod(u)$ *
- 2. $\Psi(a, 1_{fa}) = 1_a$
- 3. $\Psi(a,v \cdot u) = \Psi(a',v) \cdot \Psi(a,u)$

Ahman & Uustalu: A delta lens $(f, \Psi): A \rightleftharpoons B$ is equivalent to a

functor $f: A \longrightarrow B$ and a cofunctor $(f, \Psi): A \longrightarrow B$ such that $f \Psi (a, u) = u$.

Motto: A delta lens is a compatible functor and cofunctor pair.

A DOUBLE CATEGORY OF COFUNCTORS

A square of functors and cofunctors,

$$\begin{array}{ccc}
(f, h) & & \downarrow \\
& \downarrow$$

is compatible if:

- (1) For all a EA, gha = kfa
- (2) For all (a∈A, u:fa→b∈B), h Ψ(a,u) = δ(ha,ku)

Let Cof denote the category of cofunctors and compatible squares.

Let Cof be the double category whose:

06

- · objects are categories
- · horizontal morphisms are functors
- · vertical morphisms are cofunctors
 - · cells are compatible squares

A delta lens is a cell in Cof:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
(f, \Psi) & & & \downarrow 1_{B} \\
B & & & B
\end{array}$$

THE RIGHT-CONNECTED COMPLETION

07

The right-connected completion

M(ID) is a double category whose:

- · objects and hori. morphisms are those of ID.
- · vertical morphisms (f, x, f') are cells in ID:

$$A \xrightarrow{f} B$$

$$f' \not\downarrow \quad \alpha \quad \not\downarrow ^{18}$$

$$B = B$$

· cells & are those of ID such that:

Canonical double functors:

$$\begin{array}{ccc}
|D & \leftarrow & |\Gamma(|D) & \rightarrow & \$q(D_0) \\
A & A & A \\
f' & & & \downarrow f
\end{array}$$

A DOUBLE CATEGORY OF DELTA LENSES

08

Let Lens be the double cat. whose:

- · objects are categories
- · horizontal morphisms are functors
- · vertical morphisms are delta lenses
- · cells are given by:

Theorem: Lens ~ Ir (Cof)

A delta lens is a vertical morphism in the right-connected completion of Cof.

Canonical double functors:

Cof
$$\leftarrow$$
 Lens \rightarrow $\$_q(Cat)$

$$\begin{array}{cccc}
A & & & & A & & A \\
\downarrow & (f_{\bullet}, \Psi) & & & & \downarrow f \\
B & & & B
\end{array}$$

TABULATORS & SPAN REPRESENTABILITY

A tabulator is a certain double-categorical limit.

$$Tf \xrightarrow{\P_A} A$$

$$\downarrow \downarrow \qquad \qquad \downarrow f$$

$$Tf \xrightarrow{\P_B} B$$

The double category Cof has:

- ·tabulators
- · Horo (Cof) = Cat has pullbacks
- · Fully faithful pseudo double fun.

A cofunctor (f, φ): A → B ~
span of functors:

SPLIT OPFIBRATIONS VIA DÉCALAGE

10

The décalage construction is a comonad (D, ε, δ) on Cat given by:

$$DA = \sum_{\alpha \in A} A/\alpha$$

Given a lens (f,4): A ⇒ B construct:

A lens (f, Ψ) is a split optibration iff $Df \circ \pi$, is a discrete optibration.

A GROTHENDIECK CONSTRUCTION FOR LENSES 11

The classical Grothendieck construction is an equivalence:

SOpf(B) ~ [B, Cat]

A special case is given by: $DOpf(B) \simeq [B, Set]$

For arbitrary functors we have:

Cat/B ~ [B, Span]_{lax}

Let Lens(B) be the fibre over B of the codomain map cod: Lens—— Cat of the double category Lens.

Let SMult be the double category of sets, functions, and split multi-valued functions

 $A \xrightarrow{\psi} X \xrightarrow{t} B$

There are double functors:

Span - SMult - Sq(Set)

Theorem: $lens(B) \simeq [B, SMult]_{lax}$

For each $u:b \rightarrow b$ ' in B, there is a split multi-valued function between the fibres. We have $\Psi_u(a_i) = \alpha$ and $\Psi_u(a_z) = \delta$.

A UNIVERSAL PROPERTY VIA COMPANIONS

The left-connected completion is a universal lax (globular) cone over this double functor:

| lax double functors $B \xrightarrow{F} |\Gamma'(ID)|$ globular

transformations $F_1 \xrightarrow{B} F_2$

If ID = Span, then $SMult = I\Gamma'(ID)$ and lenses into B correspond to:

· Codomain map cod: Lens → Cat is a bifibration ⇒ change of base

$$\underset{\Delta_9}{\text{Lens}(B)} \stackrel{\Sigma_9}{\longleftarrow} \underset{\Delta_9}{\text{Lens}(C)}$$

- · Lens Cof is comonadic;

 "lenses are coalgebras for a comonad on cofunctors"
- · Lens Sq(Cat) is monadic;
 "lenses are algebras for a
 monad on functors"

- · Lens ~ Ir (Mndret (Span))
 - "lenses are monad morphisms"
 - Span(E) internal lenses
 - Mat (V) enriched lenses
- An algebraic weak factorisation system with R-IAIg \cong Lens
- · Companions in Lens are d. opfs.
- · Lens is symmetric monoidal.
- · Can complete lenses to s.opf.

 SOpf(B) Lens(B)