A GENERAL FRAMEWORK FOR COFUNCTORS

BRYCE CLARKE

Inria Saclay Centre / Macquarie University

Computer Science Theory Seminar
Tallinn University of Technology, 7 April 2022

MOTIVATION

A cofunctor is a morphism of polynomial comonads on Set.

- · A cofunctor is a kind of morphism of categories.
- · How may we understand the implicit duality between functors and cofunctors, and what is the correct setting to study these notions together?
- · How may we define the notion of cofunctor in the setting of internal categories, enriched categories, multicategories, etc.?
- · Spoiler: Using morphisms of monads & double categories!

OUTLINE OF THE TALK

- 1. History and the definition of cofunctors.
- 2. The double category of cofunctors and its properties.
- 3. Cofunctors as monad morphisms including examples for monads in the double categories:
 - Span(C) and Span(C,T)
 - Mat (V)
 - Comod (V)
- 4. Applications to generalised (delta) lenses and future work.

PART 1:

HISTORY AND THE DEFINITION OF COFUNCTORS

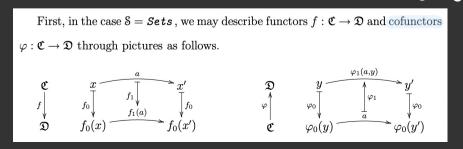
HISTORY & CONTEXT

1993: Higgins and Mackenzie introduce comorphisms between Lie groupoids (groupoids internal to cat. of smooth manifolds).

Definition 5.12. Let Ω and Ψ be Lie groupoids on bases M and N respectively. A comorphism of Lie groupoids $(\phi;f):(\Psi,N) \to (\Omega,M)$ consists of a smooth map $f:M\to N$, an action of Ψ on f, and a base-preserving morphism $\phi:\Psi \bowtie f\to \Omega$ over M. Alternatively, we could work with a general decomposition; that is, a pair of morphisms $(\psi,f):(\Psi',M)\to (\Psi,N), \quad (\phi',\mathrm{id}):(\Psi',M)\to (\Omega,M)$

1997: Aguiar defines a 2-category of categories, cofunctors, and transformations internal to a monoidal category S.

such that ψ is an action morphism over f, and ϕ' is base-preserving.



HISTORY & CONTEXT

2016/2017: Ahman & Uustalu show that polynomial comonads are categories, and the morphisms are cofunctors.

```
A cofunctor between small categories (S, \bar{P}, \mathsf{src}, \mathsf{tgt}, \mathsf{id}, ;) and (S_0, \bar{P}_0, \mathsf{src}_0, \mathsf{tgt}_0, \mathsf{id}_0, ;_0) is given by two maps t: S_0 \to S (the object map) and \bar{q}: (\Sigma s_0: S_0. \Sigma p: \bar{P}. t s_0 = \mathsf{src}\, p) \to \bar{P}_0 (the morphism map) satisfying \mathsf{src}_0\left(\bar{q}\left(s_0,p\right)\right) = s_0 and t\left(\mathsf{tgt}_0\left(\bar{q}\left(s_0,p\right)\right)\right) = \mathsf{tgt}\, p \mathsf{id}_{0s_0} = \bar{q}\left(s_0,\mathsf{id}_{ts_0}\right) \bar{q}\left(s_0,p\right);_0\bar{q}\left(\mathsf{tgt}_0\left(\bar{q}\left(s_0,p\right)\right),p'\right) = \bar{q}\left(s_0,p;p'\right)
```

2019+: Continued progress towards understanding cofunctors by Garner, Cockett, Paré, Spivak, Niu, Di Meglio, ...

The textbook Polynomial Functors: A General Theory of Interaction (Spivak & Niu) contains a detailed account of cofunctors via polynomials.

COFUNCTORS BETWEEN CATEGORIES

A cofunctor (f, Ψ): A → B consists

of an object assignment,

f: Obj(A) → Obj(B)

and a lifting operation,

where $a' = cod(\Psi(a,u))$, such that:

(1)
$$\Psi(a, 1_{fa}) = 1_a$$

(2)
$$\Psi(a, v \cdot u) = \Psi(a', v) \cdot \Psi(a, u)$$

Composition of cofunctors:

$$\begin{array}{cccc}
A & a & \xrightarrow{\Psi(a, \forall (fa, u))} & a^{1} \\
(f, \psi) & \vdots & & \vdots \\
B & fa & \xrightarrow{\forall (fa, u)} & b \\
(g, \forall) & \vdots & & \vdots \\
C & gfa & \xrightarrow{u} & c
\end{array}$$

Let Cat[#] denote the category of (small) categories and cofunctors.

EXAMPLES

- · Every split opfibration has an underlying cofunctor: its splitting.
- · A cofunctor between codiscrete cats. is a very well behaved lens.

There is a fully faithful functor:
 Mon^{op} ← Cat[#]

- More generally, every bijective-on
 -objects (b.o.o.) functor B → A
 yields a b.o.o. cofunctor A → B.
- Every discrete opfibration
 A → B yields a cofunctor A → B
- A cofunctor A → (IN,+,0) is a choice of morphism out of each object in A.

 $a \in A \longrightarrow \gamma(a,1): a \longrightarrow \bullet$

COFUNCTORS AS SPANS OF FUNCTORS

• There is an O.F.S. on Cat factoring each cofunctor into a b.o.o. cofunctor followed by a discrete optibration.

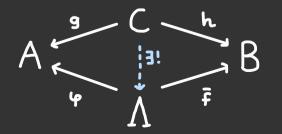
· Cofunctor ≈ certain span of functors.

· There is a special universal property: Given a cofunctor (f, 4): A→B

and a span of functors,
$$A \stackrel{g}{\longleftarrow} C \stackrel{h}{\longrightarrow} B$$

such that $\forall c \in C$, hc = fgc, and $\forall u: c \rightarrow c' \in C$, $qu = \Psi(gc,hu)$,

there is a unique functor:



PART 2:

THE DOUBLE CATEGORY OF COFUNCTORS AND ITS PROPERTIES

DOUBLE CATEGORIES

- · A double category D consists of:
 - · objects: A, B, C, D, ...
 - · horizontal morphisms: ---
 - · vertical morphisms: -----
 - · cells:

$$\begin{array}{ccc}
A & \xrightarrow{h} & B \\
f & \downarrow & \Theta & \downarrow g \\
C & \xrightarrow{k} & D
\end{array}$$

where vertical composition is associative up to isomorphism.

· A double category is a pseudo internal category in CAT,

Do - cat. of objects & hori. morph.

D1 - cat. of vert. morph. & cells

 A double category is flat if its cells are dertermined by their boundary morphisms.

PROPERTIES OF DOUBLE CATEGORIES

A horizontal morphism f: A → B has:

• A companion $f_*:A \rightarrow B$ if there are cells

satisfying the equations:

$$\Diamond | \heartsuit = 1_{\mathbf{f}} \qquad \frac{\Diamond}{\heartsuit} = 1_{\mathbf{f}_{\mathbf{e}}}$$

· A conjoint f*: B - A if there are cells

satisfying similar equations.

. The tabulator of f: A → B is

$$Tf \xrightarrow{\P_A} A$$

$$1 \downarrow \qquad \pi_f \qquad \downarrow f$$

$$Tf \xrightarrow{\P_B} B$$

which is "universal".

· ID has strong tabulators if

is invertible for all $f:A \longrightarrow B$.

FUNCTORS & COFUNCTORS

· A square of functors and cofunctors,

$$\begin{array}{ccc}
A & \xrightarrow{\mu} & C \\
(f, \psi) & & & \downarrow (g, \chi) \\
B & \xrightarrow{\kappa} & D
\end{array}$$

is compatible if:

- (1) For all a EA, gha = kfa
- (2) For all (a∈A, u:fa → b∈B),

 $h \Psi(a,u) = \chi(ha,ku)$

·Let Cof denote the category of cofunctors and compatible squares.

· A compatible square ~ diagram of functors:

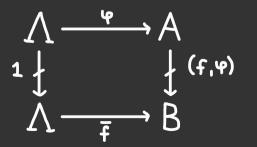
$$\begin{array}{ccc}
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow$$

· Let Cof be the double cat:

PROPERTIES OF COFUNCTORS

The double category Cof of categories, functors, cofunctors, and compatible squares has many nice properties:

- · Companions = discrete opfibrations
- · Conjoints = bijective-on-objects func.
- · Strong tabulators exist:



 Span representable via a fully faithful (pseudo) double functor:

· The internal perspective:

Codomain map is a bifibration,
 whose fibres Cof_B have finite limits.

What is the general framework?

PART 3:

COFUNCTORS AS MONAD MORPHISMS WITH EXAMPLES

MONADS IN DOUBLE CATEGORIES

A vertical monad (A, t, η, μ) in ID consists of a vertical endomorphism $t: A \longrightarrow A$ and globular cells,

satisfying the usual axioms.

A monad map $(f,\overline{f}): (A,t) \longrightarrow (B,s)$ consists of a horizontal morphism $f: A \longrightarrow B$ and a cell,

$$\begin{array}{ccc}
A & \xrightarrow{\underline{f}} & B \\
A & \xrightarrow{\underline{f}} & B
\end{array}$$

satisfying axioms using η and μ .

Example (ID = Span): monads and monad maps are categories and functors.

MONAD RETROMAPS

A vertical monad map (f, ψ): (A,t) -+ (B,s) consists of a vertical morphism $f:A \rightarrow B$ and a cell, A = AB Y A satisfying axioms using n and µ. Mnd (ID): double cat of monads,

monad maps, & vertical monad maps.

What if f: A -> B is a conjoint or companion? > For ID with conjoints: (f*, φ) ~ monad map ⇒ For ID with companions: (f*, φ) := monad retromap Define full double subcategory Mndret (ID) - Mnd (ID) on the monad retromaps. For ID = Span, Mndret (ID) ~ Cof.

INTERNAL COFUNCTORS

- · For C with pullbacks, let Span (C) be the double category of spans in C.
- · For T: C → C a pullback-preserving cartesian monad, let Span(C,T) be the double cat. of T-spans.

$$TA \longleftarrow X \longrightarrow B$$

• Example: Let T be the List monad on Set.

Mnd_{ret} (Span (C)) consists of internal cats., internal functors, and internal cofunctors.

Example: comorphisms of Lie gpds.

For ID = Span(Set, List), monad retromaps are cofunctors between multicategories.

$$A \qquad \begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}$$

$$B \qquad \begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}$$

$$b = fa$$

ENRICHED COFUNCTORS

· For a distributitive monoidal cat. (V, ⊗, I), let /Mat(V) be the double

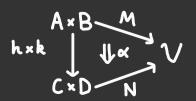
category whose:

- objects and horizontal morphisms are sets and functions

- vertical morphisms are V-matrices

$$M: A \times B \longrightarrow V$$

- cells are natural transformations:



For ID = Mat(V), monad retromaps are enriched cofunctors. In detail, $(F, \varphi): A \longrightarrow B$ consists of:

· A function $F : A_o \longrightarrow B_o$.

· For each a E A and b E B,

a lifting operation in V,

$$\mathcal{B}(F_{a,b}) \xrightarrow{\varphi_{a,b}} \sum_{x \in X} \mathcal{A}(a,x)$$

where X=F-1(b) is the fibre of Fover b.

Example: weighted cofunctors, V=wSet.

AGUIAR'S COFUNCTORS

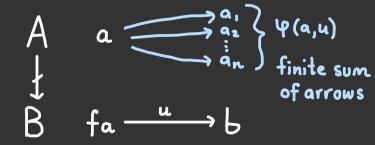
Consider a monoidal cat. (V, \otimes, I) with equalisers which are preserved by the functors $A\otimes (-)\otimes B: V \longrightarrow V$.

Let Comod (V) be the double category whose:

- · objects are comonoids
- · horizontal morphisms are comonoid homomorphisms
- vertical morphisms are two-sided
 comodules

For ID = Comod (V), monad retromaps are internal cofunctors in the sense of Aguiar.

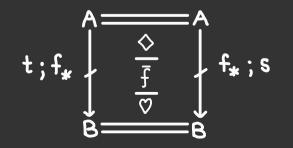
Example: When $V = Vec_k$, we have cofunctors between linear categories. Projecting to ordinary categories yields:



PROPERTIES OF MONAD RETROMAPS

The double category Mndret (ID) inherits several properties from a unit-pure ID with companions:

- · It is flat.
- Monad map $(f, \bar{f}): (A,t) \longrightarrow (B,s)$ has:
 - conjoint iff f:A→B is invertible.
 - companion iff cell below is an iso:



- ·On the other hand, many properties are difficult to prove at the level of ID.
- Conjecture: Mnd_{ret} (ID) has tabulators if ID is strongly span representable.
- · In specific cases of ID:
 - \$pan(C) \
 - Mat (V) ✓ if V is extensive
 - Comod (V) unknown

PART 4:

APPLICATIONS TO DELTA LENSES AND FUTURE WORK

A FRAMEWORK FOR GENERALISED LENSES

- · A (delta) lens is a compatible functor and cofunctor pair.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
(f, \Psi) & \downarrow & \downarrow_{1_{B}} & f \Psi(a, u) = u \\
B & = & B
\end{array}$$

A double cat. ID is right connected if id: D₀→D₁ is
 right adjoint to cod: D₁→D₀.

· Lens = \(\tau(Cof)\) and Lens → Cof is comonadic.

LA a
$$\xrightarrow{(u, \Psi(a, u))}$$
 a' cofree lens on (f, Ψ) B fa \xrightarrow{u} b

• Lens(D) = $\Gamma(Mnd_{ret}(D))$ yields lenses between monads.

CURRENT & FUTURE RESEARCH

- · What other properties of Mndret (D) may be inherited from ID?
- · Are there more interesting examples of cofunctors for some ID?
- · Can all properties of cofunctors be understood via representation as spans of functors?
- · Can we link back to polynomials?

· Is there a fibred approach to cofunctors?

DOpf_B
$$\hookrightarrow$$
 Cof_B iso \downarrow iso \uparrow ?

In other words, is there a double cat. ID such that

cofunctors into B

(lax) double functors B→ID

SUMMARY

- · Introduced a general framework for the theory of cofunctors via the double category IMndret (ID) of monads, monad maps, and monad retromaps in a double category ID with companions.
- · Functors and cofunctors are dual and can be studied together:

Cof
$$\simeq |M \cap d_{ret}(ID)$$
for $ID = Span$

$$A \xrightarrow{h} C$$

$$f(f, \psi) \downarrow \qquad \downarrow^{(g, \delta)} \qquad h \psi(a, u) = \delta(ha, ku)$$

$$B \xrightarrow{k} D$$

Can use this setting to generalise cofunctors (internal, enriched)
 and study delta lenses.

21 A BETTER DOUBLE CATEGORY OF COFUNCTORS

