DELTA LENSES AS COALGEBRAS FOR A COMONAD

BRYCE CLARKE
Macquarie University

NINTH INTERNATIONAL WORKSHOP ON BIDIRECTIONAL TRANSFORMATIONS

21 June 2021

OVERVIEW OF THE TALK

- · Every lens consists of two parts: Get (forwards) and Put (backwards).
- ·Usually a d-lens is understood as a Get functor equipped with additional algebraic structure specifying the Put.
- · Here we take a Put-based approach to d-lenses as coalgebras for a comonad.

HISTORY & MOTIVATION

- -2012. Gibbons & Johnson compare (co)-algebraic approaches to classical state-based lenses, internalise to any C.C.C.
- 2013: Johnson & Rosebrugh show d-lenses are algebras for a semi-monad.
- 2016: Ahman & Uustalu establish a construction assigning every cofunctor (morphism of directed containers) to a d-lens.
- 2017: Ahman & Uustalu characterise d-lenses as cofunctors with additional structure, given by a functor.

REVIEWING D-LENSES & COFUNCTORS

- · A d-lens (f, φ): A→B consists of a a functor f: A→B and a lifting operation,
- $\begin{array}{ccc}
 A & a & \xrightarrow{\Psi(a,u)} & a' \\
 (f,\Psi) & \vdots & & \vdots \\
 B & fa & \xrightarrow{u} & b
 \end{array}$

satisfying the axioms:

(1)
$$f \psi(a,u) = u$$

(2)
$$\Psi(a,1_{fa}) = 1_a$$

(3)
$$\Psi(a,v \cdot u) = \Psi(a',v) \cdot \Psi(a,u)$$

A cofunctor (f₀, Ψ): A → B consists of
 a function f₀: Ob(A) → Ob(B) and
 a lifting operation,

$$\begin{array}{ccc}
A & a \xrightarrow{\Psi(a,u)} a' \\
(f_a, \Psi) & \vdots & \vdots \\
B & f_a & \xrightarrow{u} & b
\end{array}$$

satisfying the axioms:

(1)
$$f_o \operatorname{cod}(\varphi(a,u)) = \operatorname{cod}(u)$$

(2)
$$\Psi(a,1_{fa})=1_{a}$$

(3)
$$\Psi(a,v \cdot u) = \Psi(a',v) \cdot \Psi(a,u)$$

DIAGRAMMATIC REPRESENTATIONS USING FUNCTORS

- · A functor f: A → B is called:
 - * bijective-on-objects if f_o:Ob(A)→Ob(B) is a bijection.
 - * discrete optibration if for all pairs (a $\in A$, $u:fa \rightarrow b \in B$) there is a unique morphism $w:a \rightarrow a$ such that fw = u.
 - $\begin{array}{cccc}
 A & a & \xrightarrow{\exists! w} & a' \\
 f & \vdots & \vdots \\
 B & fa & \xrightarrow{u} & b
 \end{array}$

A cofunctor (f₀, ψ): A → B is the
 same as a span of functors,

$$A \stackrel{\Psi}{\longleftarrow} X \stackrel{\overline{f}}{\longrightarrow} B$$

where Ψ is bijective-on-objects and \overline{f} is a discrete opfibration.

• A d-lens (f, φ): A → B is the same same as a commutative diagram:

CATEGORY OF COFUNCTORS OVER A BASE

- · Let B be a fixed category (view).
- · Let Cof(B) be a category whose:
 - * objects are cofunctors into B;
 - * morphisms are given by

$$\begin{array}{ccc}
A & \xrightarrow{h} & C \\
(f_{\bullet}, \psi) & & \swarrow (g_{\bullet}, \delta)
\end{array}$$

functors h such that foa=goha and hφ(a,u)=δ(ha,u).

- Idea: morphisms are functors
 between source categories which
 preserve the chosen lifts.
- · Morphisms are equivalent to:

where h is an induced functor.

D-LENSES AS MORPHISMS BETWEEN COFUNCTORS

- ·Let 1_B:B→B be the trivial cofunctor on B
- · Proposition: Morphisms in Cof(B)
 to the trivial cofunctor are
 equivalent to d-lenses into B.

$$A \xrightarrow{f} B$$

$$(f_{\bullet}, \psi) \xrightarrow{X} B$$

 \simeq functors f such that $f_0 a = f_0 a$ and $f_1 \varphi(a, u) = \pi(f_0, u) = u$.

- · Define the category Lens(B) of d-lenses over a base B as the slice category Cof(B)/1_B.
- There is a forgetful functor
 L: Lens (B) → Cof(B) given by:

WHY ISN'T EVERY COFUNCTOR A D-LENS?

· There are two primary obstructions which could occur:

(1) Not enough morphisms in view.

Solution: delete morphisms in A.

(2) Too many morphisms in view.

Solution: duplicate morphisms in A.

· The key to constructing a universal solution is to use the codiscrete category B which has a unique morphism between each object in Ob(B).

A RIGHT ADJOINT: THE COFREE D-LENS ON A COFUNCTOR

· Proposition: There is an adjunction,

Lens(B) — Cof(B)

whose right adjoint sends a cofunctor (f₀, Ψ): A→B to the cofree d-lens P→B given by:

- The category P has:
 *objects the same as A,
 *morphisms (w:a→a', u:fa→fa').
- The counit is a morphism in Cof(B) given by:

THE MAIN RESULT

Theorem: The forgetful functor Lens(B) - Cof(B) is comonadic Proof: Consider a coalgebra for the comonad LR on Cof(B):

- The coalgebra maps into the pullback P, and compatibility with the counit gives $(1_A,f):A \rightarrow P$.
- A coalgebra is a functor $f: A \longrightarrow B$ such that $f \circ \Psi = \overline{f}$; equivalently $f \circ a = f \circ a$ and $f \circ \Psi(a, u) = u$.

Iens(B) ~ Coalg (LR)

SUMMARY OF THE TALK

- · Many approaches to d-lenses:
 - *A functor and a lifting operation:

$$\begin{array}{ccc}
A & a \xrightarrow{\Psi(a,u)} a' \\
(f,\Psi) & \vdots & \vdots \\
B & fa \xrightarrow{u} b
\end{array}$$

*A certain commutative diagram:

*An object in the category Cof(B)/18

- · Our main result gives a Put-based approach: d-lenses into B are coalgebras for a comonad on Cof(B).
- · There are nice categorical consequences including:
 - * Computing colimits in Lens (B)
 - *Every d-lens factorises through a cofree lens by a b.o.o. functor.
- This result also unifies several previous results in the literature.