LENSES AS COALGEBRAS FOR A COMONAD

BRYCE CLARKE

AUSTRALIAN CATEGORY SEMINAR
28 APRIL 2021

HISTORY & MOTIVATION

- · Classical state-based lenses are equivalent to coalgebras for the comonad generated by the adjunction (-) * B [B,-] on Set.
- ·In 2017, Ahman and Uustalu showed explicitly how (delta) lenses can be understood as cofunctors with additional structure.
- · In 2016, [AU] describe a construction on cofunctors which yields lenses.
- · Last year I showed that:
 - Lens(B) Cat/B is monadic (lenses as algebras for a monad)
 - Lens(B) ~ [B, s Mult] (lenses as lax double functors)

OVERVIEW OF THE TALK

· The central goal is to show that the forgetful functor,

$$Lens(B) \longrightarrow Cof(B)$$

is comonadic.

·We will see that this result also holds when the above diagrams are interpreted in a setting more general than Cat.

BACKGROUND: BASIC NOTIONS

- A functor f: A→B is bijective-on-objects if its underlying object
 assignment fo: Ao→Bo is a bijection.
- A functor $f:A \rightarrow B$ is a discrete optibration if for all pairs (a $\in A$, $u:fa \rightarrow b \in B$) there exists a unique morphism $w:a \rightarrow a$, in A such that fw=u.

Some motivating questions

- 1) How might we consider morphisms <u>like</u> discrete opfibrations?
- 2) Can we define these notions in arbitrary categories?

BACKGROUND: COFUNCTORS & LENSES

- · Both cofunctors and lenses are like discrete opfibrations.
- · A cofunctor Ψ: A → B is a span of functors,

where:

Ψ is bijective-on-objects;

Ψ is a discrete opfibration.

· A lens (f, φ): A ⇒ B is a functor f: A → B together with a cofunctor φ: A → B such that the following diagram commutes:

THE SPECIFIC SETTING

Let Cat be the category of small categories and functors.

· Set is a reflective subcategory of Cat:

- · Bijective-on-objects functors form the class of weak equivalences with respect to (-): Cat -> Set.
- · Discrete optibrations form a chosen class of morphisms called "fibrations."

THE GENERAL SETTING

Let E be a category with pullbacks equipped with:

· a reflective subcategory D whose reflector preserves pullbacks;

$$\mathbb{D} \xrightarrow{(\frac{-}{-})^{\circ}} \mathcal{E}$$

the wide subcategory Core(E) ⊆ W ⊆ E of weak equivalences
 whose members are sent to isomorphisms by the reflector;

$$\stackrel{\sim}{\longrightarrow}$$
 $\in \mathcal{W}$

· a wide subcategory Core(E) ⊆ Fib ⊆ E of fibrations.*

7

WORKING OVER A BASE

- ·Let $\mathcal{E} = (\mathcal{E}, \mathcal{D}, \mathcal{W}, \mathcal{F}ib)$ be our setting for the talk.
- · Choose an object B & E.
- ·Let Fib(B) be the full subcategory of E/B on the class of fibrations (think DOpf(B) in Cat).

·Let XFib(B) be the category of extended fibrations over B (think Cof(B) in Cat).

AN EASY LEMMA

Lemma: Fib(B) is a coreflective subcategory of XFib(B):

Proof: The counit for the adjunction is given by:

LENSES OVER A BASE

Let Lens (B) be the category of lenses over B consisting of:

Goal: Show that the forgetful functor Lens(B) XFib(B) is comonadic.

ASIDE: AN INTERESTING DIAGRAM

· Since Fib(B) has a terminal object 1g, but XFib(B) does not, we can consider the following factorisation:

· Is the category XFib(B)/T1 something familiar? Yes!

1 1

ASIDE: ANOTHER CHARACTERISATION OF LENSES

Proposition: There is an isomorphism Lens(B) = XFib(B)/T18.

Proof: Examining the objects and morphisms of XFib(B)/T18:

Objects are equivalent to lenses

Morphisms are equivalent to those in Lens(B)

UNDERLYING OBJECTS

Lemma: There is a functor XFib(B) -> D/Bo.

Proof: On objects the functor is given by:

CONSTRUCTING A RIGHT ADJOINT

Lemma: There is a functor XFib(B) - Lens(B) given by:

Proof: Consider the pullback:

- · n is the unit of (-), (-) and components are in W since counit = id.
- πA ∈ W since (-), preserves pullbacks.
- · Outer square commutes (abst. nons.)
- ⟨4, \$\varphi\$ \in \text{\W} by 2-out-of-3.

THE MAIN ADJUNCTION

Lemma: There is an adjunction:

Proof: The unit and counit are given by:

THE MAIN RESULT

Theorem: The forgetful functor Lens(B) - XFib(B) is comonadic Proof: Consider a coalgebra for the comonad LR on XFib(B):

- The coalgebra maps into the pullback P, and compatibility with the counit gives $(1_A,f):A \rightarrow P$.
- Thus a coalgebra is a functor
 f: A→B with f_o= φ̄_o•φ̄⁻¹ and f•φ = φ̄.
- · Comultiplication adds nothing more.

Lens(B) ~ Coalg (LR)

IMMEDIATE COROLLARIES

Let E=Cat, D=Set, and W={bijective-on-objects functors}.

- When Fib={discrete opfibrations}, then we have that Lens → Cof(B) is comonadic (this was our main goal).
- When Fib = {surjective-on-objects discrete opfibrations}, then
 our coalgebras are surjective-on-objects lenses
- · In general, Fib is any wide subcategory of E:
 - What are some other interesting choices for Fib?
 - How can we choose Fib to behave like discrete optibrations?

FIBRATIONS VIA COMONADS

Let E be a category with pullbacks equipped with a comonad (D, ε, δ) which preserves pullbacks.

There is a wide subcategory $Core(E) \subseteq D$ -Fib $\subseteq E$ of D-fibrations consisting of morphisms $f:A \rightarrow B$ in E such that the square

Example: If E=Cat and D is the décalage comonad, then D-Fib is the category of discrete opfibrations.

D-UNIVERSAL LENSES

A lens $(f, \Psi): A \rightleftharpoons B$ in a category E = (E, D, W, D-Fib) is D-universal if the morphism $Df \cdot \pi$, is a D-fibration.

Example: If E=Cat and D is the décalage comonad, then a lens is D-universal if and only if it is a split opfibration.

19

REINDEXING FUNCTORS

· Given a lens (9,8): $B \longrightarrow C$, there is a functor, $\sum_{(9,7)} : Lens(B) \longrightarrow Lens(C)$ defined by post-composition (assuming Fib is nice).

· Given a functor g: B -> C, there is a functor,

$$\Delta_q: Lens(C) \longrightarrow Lens(B)$$

defined by pullback (also assuming Fib is nice).

- · When gEFib, there is an adjunction $\Sigma_g \Delta_g$.
- · Do these functors yield a double category perspective?

CONNECTION TO THE ALGEBRA STORY?

· What conditions on E are required for the functor,

$$lens(B) \longrightarrow \mathcal{E}/B$$

to be monadic? (Recall that E=Cat is sufficient)

· What can we understand from the composite adjunction?

· We know that $SOpf(B) \longrightarrow Cat/B$ is monadic; is the functor $SOpf(B) \longrightarrow Cof(B)$ also comonadic?

2 1

SUMMARY OF THE TALK

