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COLLABORATORS
This talk is based on research from the Applied Category
Theory 2020 Adjoint Schosl together with:
* Michael Johnson
* Emma Chollet (ETH Ziirich)
* Maurine Songa (University of KwaZulu-Natal)
Vincent Wang (University of Oxford)
* Gioele Zardint (ETH Ziirich)

The goal of the praoject (and this talk) was to investigate the

“nice” properties of the cateqory Lens of categories and (delta) lenses.
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REVIEWING LENSES

A lens (f,9):A=8B is a
functor eq,u.ippecl. with a
choice of lifts,

A a \P(a,u) Q@
}Lf
B 'FQ.L) b

which satisties the axioms:

e W(“) 1-[-'03 = 1a.
e P(a,veu) = ¥(a,v) o P (a,u)

-Every leng (f,¢):A=8
may be represented by a

commutative diqsmm n Ga.'l:,

RN
AL SR

wheve ¥ is bijective-on-objects

and @ is a discrete op-Fibra-Hon.
« The span (%,A,9):B— A is

called a cofunctor.



BASIC EXAMPLES OF LENSES
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THE CATEGORY OF LENSES

There is a category Xens whose objects are categories

and whose morphisms are lenses with composition given by:

A a ‘P(O,X('Fa,u)) >

P 7N\
B fa—"2 . A - n .
v[s SN N

A——B—5—C

C gfa——= » C

There is an identity-on-objects isofibration fens — Cat which

assigns a lens to its underlging fonctor.



THE PROBLEM WITH PULLBACKS
A category € has Pvllbacks & £/8 has products forall Be £.
* The category fans /g has a monoidal preduct given by:

1x¥ ¥l

Axedl — A% C «— NxgC

\/\/r=
V&YK
A—s—B——1N

e Problev: this monoidal structure is not cartesian in general!

- ls ¥ possible +hat the vniversal Proper-l-g holds for certain inputs?



DIGRESSION: SOME USEFUL LEMMAS

Consider a diagram in Calt with g a discrete opfibration:

A—=t R
S-RCA (%)

Then:
(1) 3of is a discrete opfibration = § is a discrete opfibration

f has a unique lens structure

(2) gof has a lens structure =
svch that (%) commutes in Lens



PULLBACKS ALONG DISCRETE OPFIBRATIONS
Propasition: The category ZLens admits all pullbacks along discrete

opfibrations. Moreover, these pullbacks coincide with the "canonical’

monordal Structure on &ens /8.

Proof: Apply +he prvevious
levmma +o twe triangle (%) /
to give the uvawversal X
functor Z—2AxgC a

lens s¥vucture.




OTHER EXAMPLES OF PULLBACKS

Ana other Commuﬁng square of

\ lenses inte the cospan is equivalent

to a pay of lenses from the

\
¥
(:) ‘) (z ) ‘)

connacted components as fellows:

(‘-'h“) (zlc)
./ v \ <

T

Tuvs the unvevsal properhy is catis fed.
N /
Conjecture: If all products of fibres

nvolve a discrete cat, the pullback exists.



MONOIDAL STRUCTURE & PRODUCTS

The cartesian moneidal structure on Cat induces a
semi-cavtesian monoidal structure on Lens with projections

given by:

L A § Bo 1xi ix1 on B by

s X 7 X
— CAxB—_ 3B

Ae—

Moreover, if A or B is o discrete category, then the above

corresponds +o the cavtesian product in Lens.

Opewn question: Are these the only products in fens?



COPRODUCTS

Propos'rl-ion: The canonical functor fens— Cat creates coproducts.

Proof (idea): Recall that in Cat, the coproduct injection functors

are injective-on-objects discrete opfibrations.

Given a pair of lenses (f,0):A—B and (3,¥): C—B we have a
vaique lens from the coproduct in Cat commuting with the

injections given 53:

P+¥ /\ +) (% ¥]
N

A+C (£,a) 8




DISTRIBUTIVITY

e A monoidal c,q'l'esonj is distnbutive if the canonical map,

AQB + AoC [1®ie, 1@ic]) 7A®<B+C)

IS awn 1ISem ovphis m for o\ A, B, C.

¢ Since Cat distributive (with vespect +o the cartesian
monoidal structure) , and fens — Cat is a strong

moncidal isofibration, we have +hat Lens is distributive.

e Actually we can show that distributivity follows from

an even s*l-romaer property of ens.



EXTENSIVITY

- A category with coprodvcts is extensive 1f pullbacks along

coproduct injectiens exist, and in any commvutative diasram,

X > Z ¢ Y

L]

A—— AtB<——B

the two squares are pullbacks & the +op row 1s a copreduct.

. Proposi'l']on.: dens is an extensive c.or!-e.sor%.



EQUALISERS

* Lens admits all equalisers, however unlike pullbacks and

products, they ave not always presevved 65 dens o Cat.

* We may construct equalisers in Lens throvgh +aking
the largesk subobject of the equalisev in Cat which

admits a leas structure and equalises the diagram in Lens.
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MONOMORPHISMS
A lens (£,9):A=B is o monomorphism if any of the following
equivalent conditions hold:
(1) (f,¢) is an in)jective-on-objects discrete opfibration |
(2) (£.¢) is a fully faithful discrete opfibration ;
(3) § is & monomorphism in Cat.

Con)ecture: These conditions are necessary and svfficient.

A ~— —

|




EPIMORPHISMS

A lens (£,9):A2B is an epimorphism if any of the following
equivalent conditions hold:

(1) (f,9) is surjective-on-objects ;

(2) (f,%9) is svurjective-on-morphisms .

Conjectuve: These conditions are necessary and sufficient.

Corollary(?):In fens, epi + mono & isomorphism.

=




PROPER FACTORISATION SYSTEM

The cateqory &ens has an orthogonal factorisation systent with:
€ = surjective-on-objects lenses = Epi(Lens)

M = injective-on-objects discrete opfibrations = Mono ( Lens)

This covresponds to the (surj-on-ob, inj-on-ob f.£.) OFS via Lens > Cat.

//'. \\ . >e >e

° > e D> e 77 \_—’)




SPLIT IDEMPOTENTS
* An idempo‘l'en‘l‘ splits if the following paralle]l pair has an

equalisev (ov coegqualiser):

Q-2 AT A0

e ln Lo.ms, all idempotents sPI'\-l- and they may be obtained by

+he (epi,mone) factorisation:

A f LA
N A

- These give simple examples of coequalisers — are +here others?




PUSHOUTS & ADHESIVITY ?

* Like coequalisers it seems difficult +o construet pushouts

in ‘Lens, but do we ot least have +hem along wonos ?
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ELEMENTS & SINKS
- Fov categories and fuactors we have Cat (1,A)Z A | but

this statewent is net +rve ;A Lens!

° ° Y@ & o 8e—— o —>06 0_7‘_0 .Q

N 1 clement j t2 elelmem'l'sJ 0 elewmeaents!

e The set of elements &ens (1, A) prov’-a\es an invariant for +he
category which measures the amount of sinkRs in A, the set of
elements a€A such that “ZA Ala,x) = 1.

* The set of sinks is a right adjoint to the the discrete category

functor:

Lens (disc(A\' B) 2 Set (A , sinh(B))



MONOIDAL CLOSEDNESS

« The hem-sets in Leans may be si\le.\r\ a category Structuve:
/\ P £ /\ S
NN ) ~
tl A =B = fJ B
~% 3 %
n 0 A® )

s
* One might suspect that Kens(A,-) is right adjoint to (-)®A.

- Howevev +Wis is not 4rve! Consider A=¢:2+$ and so

1®8A=A—>A
A — fens(1,A)=¢

Cowntradiction!

¢ ls it possible that (Rens,®,1) is monoidal closed?



SUMMARY & FUTURE WORK

*ln this 4alk, we have seen that
Lens a many "nice” aspects
including:

- pullbacks along discrete opfibs.
- Ssemi-cartesian monoidal strueture
- coproducts

- distributivity and extensivity

- equalisers

- proper facterisation system

-sufficient conditions for ep'\,mono

* What are categories internal +o
Lens with source map a discrete
opfibration ?

« When V= &ens, is the bicategory
V-Mat interesting?

« What about Lens-enriched cats?

*Does Lens admit other nice
factorisation systems or monoidal

structures?

*ls &ens a "nice" 2-category?



