WHAT'S SO NICE ABOUT THE CATEGORY OF LENSES?

BRYCE CLARKE

AUSTRALIAN CATEGORY SEMINAR
17 FEBRUARY 2021

COLLABORATORS

This talk is based on research from the Applied Category Theory 2020 Adjoint School together with:

- · Michael Johnson
- · Emma Chollet (ETH Zürich)
- · Maurine Songa (University of KwaZulu-Natal)
- · Vincent Wanq (University of Oxford)
- · Gioele Zardini (ETH Zürich)

The goal of the project (and this talk) was to investigate the "nice" properties of the category Lens of categories and (delta) lenses.

OUTLINE OF THE TALK

Background

- What is a lens?
- Some basic examples

Motivation

- The problem with pullbacks
- A partial solution via discrete optibrations

Results

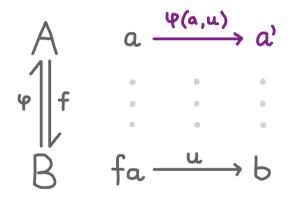
- Products, equalisers, coproducts, extensivity
- Factorisation systems, epis, monos

Conclusion

- Ideas for future work
- Summary of the talk

REVIEWING LENSES

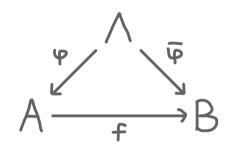
A lens $(f, \Psi): A \Longrightarrow B$ is a functor equipped with a choice of lifts,



which satisfies the axioms:

- $\Psi(a, 1_{fa}) = 1_a$
- $\Psi(a, v \circ u) = \Psi(a', v) \circ \Psi(a, u)$

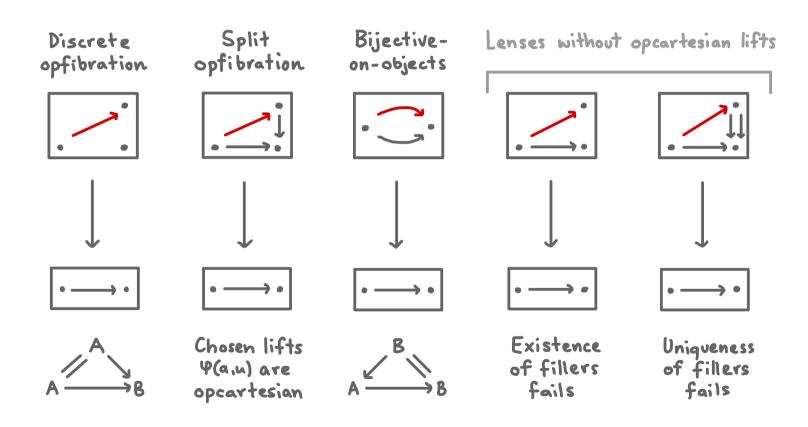
· Every lens (f, y): A == B may be represented by a commutative diagram in Cat,



where 4 is bijective-on-objects and \$\P\$ is a discrete opfibration.

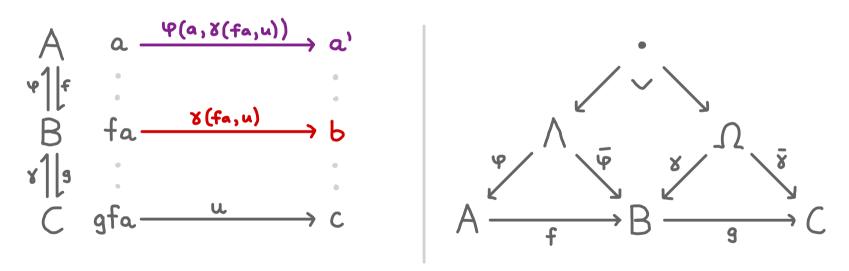
• The span $(\bar{\Psi}, \Lambda, \Psi) : B \longrightarrow A$ is called a cofunctor.

BASIC EXAMPLES OF LENSES



THE CATEGORY OF LENSES

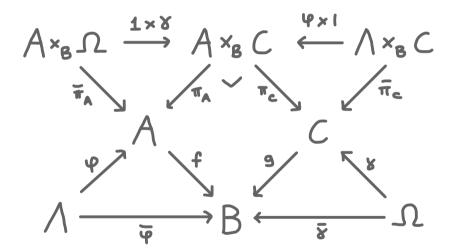
There is a category Lens whose objects are categories and whose morphisms are lenses with composition given by:



There is an identity-on-objects isofibration Lens --- Cat which assigns a lens to it's underlying functor.

THE PROBLEM WITH PULLBACKS

- A category ε has pullbacks $\Leftrightarrow \varepsilon/B$ has products for all $B \in \varepsilon$.
- · The category Lens / B has a monoidal product given by:



- · Problem: this monoidal structure is not cartesian in general!
- · Is it possible that the universal property holds for certain inputs?

DIGRESSION: SOME USEFUL LEMMAS

Consider a diagram in Cat with q a discrete optibration:

Then:

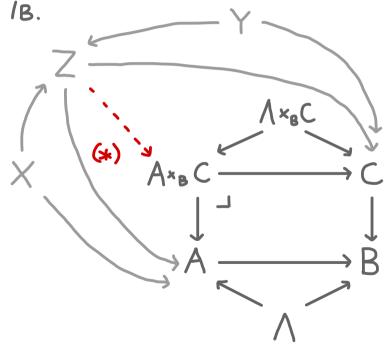
(1) gof is a discrete optibration \Rightarrow f is a discrete optibration

(2) gof has a lens structure \Rightarrow f has a unique lens structure such that (*) commutes in Lens

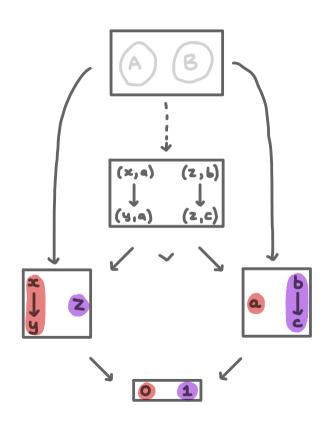
PULLBACKS ALONG DISCRETE OPFIBRATIONS

Proposition: The category Lens admits all pullbacks along discrete opfibrations. Moreover, these pullbacks coincide with the "canonical" monoidal structure on Lens 1B.

Proof: Apply the previous lemma to the triangle (*) to give the universal functor Z -> A×B(a lens structure.



OTHER EXAMPLES OF PULLBACKS



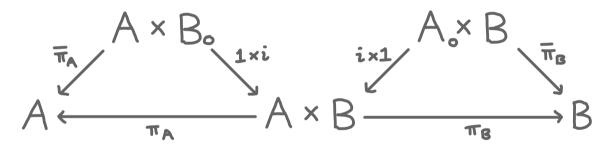
Any other commuting square of lenses into the cospan is equivalent to a pair of lenses from the connected components as follows:

Thus the universal property is satisfied.

Conjecture: If all products of fibres
involve a discrete cat, the pullback exists.

MONOIDAL STRUCTURE & PRODUCTS

The cartesian monoidal structure on Cat induces a semi-cartesian monoidal structure on Lens with projections given by:



Moreover, if A or B is a discrete category, then the above corresponds to the cartesian product in Lens.

Open question: Are these the only products in Lens?

COPRODUCTS

Proposition: The canonical functor Lens --- Cat creates coproducts.

Proof (idea): Recall that in Cat, the coproduct injection functors

are injective-on-objects discrete optibrations.

Given a pair of lenses $(f, \Psi): A \longrightarrow B$ and $(g, \aleph): C \longrightarrow B$ we have a unique lens from the coproduct in Cat commuting with the injections given by:

$$A + C \xrightarrow{(f,g)} B$$

DISTRIBUTIVITY

· A monoidal category is distributive if the canonical map,

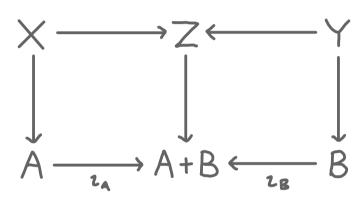
$$A \otimes B + A \otimes C \xrightarrow{\text{[100ig, 100ic]}} A \otimes (B + C)$$

is an isomorphism for all A, B, C.

- · Since Cat distributive (with respect to the cartesian monoidal structure), and Lens -> Cat is a strong monoidal isofibration, we have that Lens is distributive.
- · Actually we can show that distributivity follows from an even stronger property of Lens.

EXTENSIVITY

· A category with coproducts is extensive if pullbacks along coproduct injections exist, and in any commutative diagram,

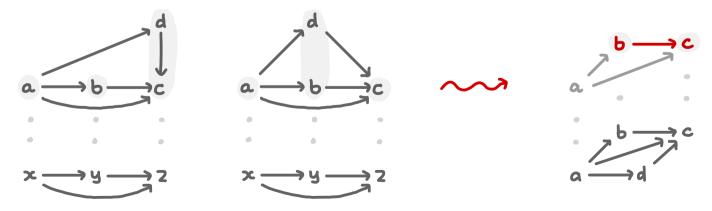


the two squares are pullbacks \ the top row is a coproduct.

· Proposition: Lens is an extensive category.

EQUALISERS

- · Lens admits all equalisers, however unlike pullbacks and products, they are not always preserved by Lens → Cat.
- · We may construct equalisers in Lens through taking the largest subobject of the equaliser in Cat which admits a lens structure and equalises the diagram in Lens.

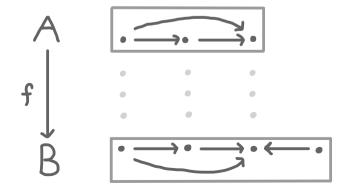


MONOMOR PHISMS ==>---

A lens (f, φ): A = B is a monomorphism if any of the following equivalent conditions hold:

- (1) (f, φ) is an injective-on-objects discrete optibration;
- (2) (f, 4) is a fully faithful discrete opfibration;
- (3) f is a monomorphism in Cat.

Conjecture: These conditions are necessary and sufficient.



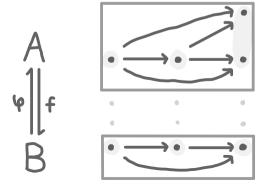
EPIMORPHISMS

A lens (f, p): A = B is an epimorphism if any of the following equivalent conditions hold:

- (1) (f, φ) is surjective-on-objects;
- (2) (f, φ) is surjective-on-morphisms.

Conjecture: These conditions are necessary and sufficient.

Corollary (?): In Lens, epi + mono \improx isomorphism.

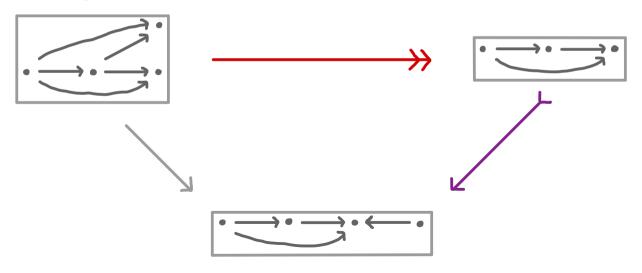


PROPER FACTORISATION SYSTEM

The category Lens has an orthogonal factorisation system with:

M = injective-on-objects discrete opfibrations ⊆ Mono (Lens)

This corresponds to the (surj-on-ob, inj-on-ob f.f.) OFS via Lens - Cat.

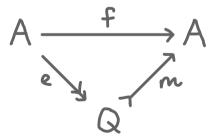


SPLIT IDEMPOTENTS

· An idempotent splits if the following parallel pair has an equaliser (or coequaliser):

$$Q \longrightarrow A \xrightarrow{f} A \longrightarrow Q$$

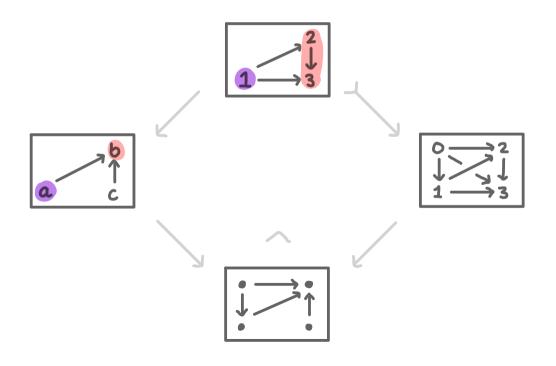
· In Lens, all idempotents split and they may be obtained by the (epi, mono) factorisation:



· These give simple examples of coequalisers - are there others?

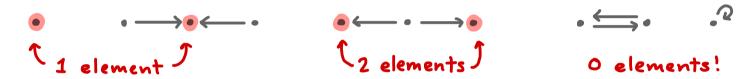
PUSHOUTS & ADHESIVITY?

· Like coequalisers, it seems difficult to construct pushouts in Lens, but do we at least have them along monos?



ELEMENTS & SINKS

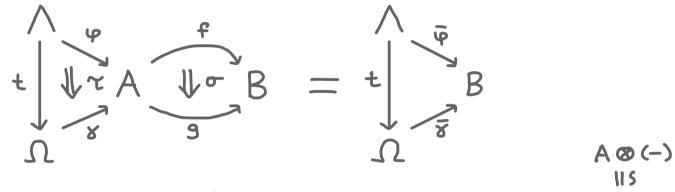
· For categories and functors we have $Cat(1,A)\cong A$, but this statement is not true in Lens!



- The set of elements Lens (1, A) provides an invariant for the category which measures the amount of sinks in A, the set of elements $a \in A$ such that $\sum_{x \in A} A(a,x) = 1$.
- The set of sinks is a right adjoint to the the discrete category functor:

MONOIDAL CLOSEDNESS

· The hom-sets in Lens may be given a category structure:



- · One might suspect that Lens (A, -) is right adjoint to (-) & A.
- · However this is not true! Consider A = {· → } and so

$$\frac{1 \otimes A = A \longrightarrow A}{A \longrightarrow \text{lens}(1,A) = \phi}$$
 Contradiction!

· Is it possible that (Lens, Ø, 1) is monoidal closed?

SUMMARY & FUTURE WORK

- · In this talk, we have seen that Lens a many "nice" aspects including:
 - -pullbacks along discrete opfibs.
 - semi-cartesian monoidal structure
 - coproducts
 - distributivity and extensivity
 - equalisers
 - proper factorisation system
 - -sufficient conditions for epi/mono

- · What are categories internal to Lens with source map a discrete optibration?
- When V= Lens, is the bicategory
 V-Mat interesting?
- · What about Lens-enriched cats?
- · Does Lens admit other nice factorisation systems or monoidal structures?
- · Is Lens a "nice" 2-category?