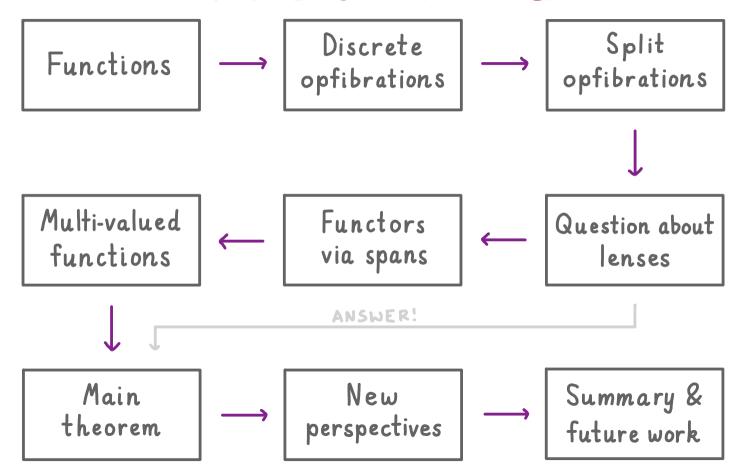
GENERALISING FIBRATIONS VIA MULTI-VALUED FUNCTIONS

BRYCE CLARKE

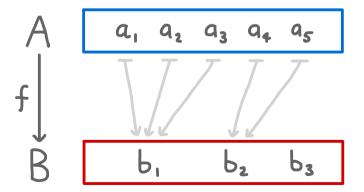
THE 64th ANNUAL MEETING OF THE AUSTRALIAN MATHEMATICAL SOCIETY

OUTLINE OF THE TALK

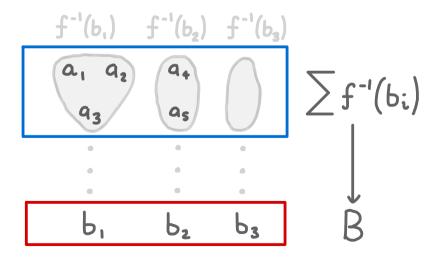


TWO PERSPECTIVES ON FUNCTIONS

For each element in the domain, there is an assigned element in the codomain.



For each element in the codomain, there exists a set called the fibre.

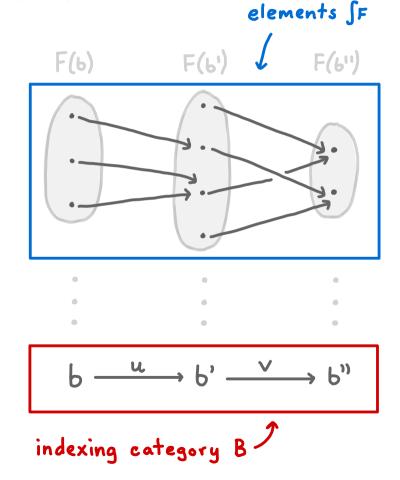


DISCRETE OPFIBRATIONS

Function \simeq collection of sets indexed by a set.

Discrete opfibration ~

- 1) collection of sets indexed by a small category B, via a functor F: B → Set.
- 2) functor with a certain lifting property.

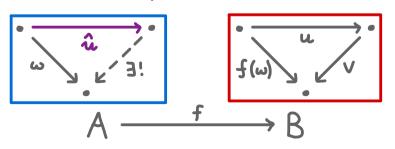


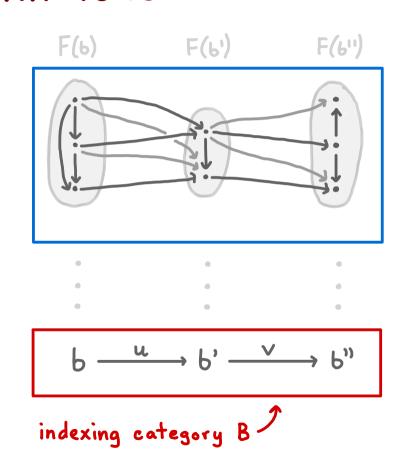
category of

SPLIT OPFIBRATIONS

Split opfibration ~

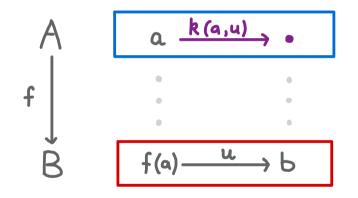
- 1) collection of small categories indexed by a small category B, via a functor F: B → Cat.
- 2) functor equipped with a suitable choice of opcartesian lifts.





A QUESTION CONCERNING LENSES

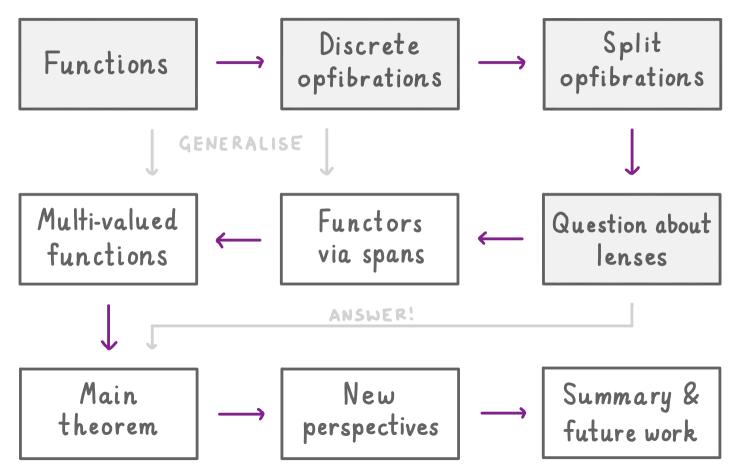
· A lens is a functor equipped with a suitable choice of lifts.



Introduced by Diskin, Xiong,
& Czarnecki in 2011 to study
bidirectional model transformations.

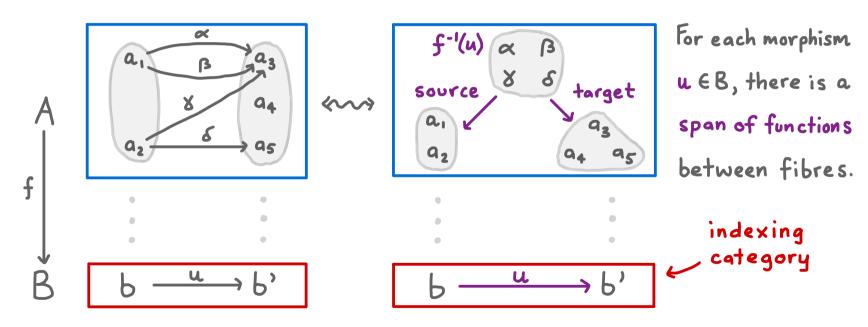
- Generalise both discrete/split optibrations & bijective-on-objects functors with a chosen section.
- Natural question: Does there
 exist a category C such
 that for any small category
 B we have an equivalence:

OUTLINE OF THE TALK



FUNCTORS VIA SPANS OF FUNCTIONS

Idea: Functor ~ collection of sets indexed by a small category.

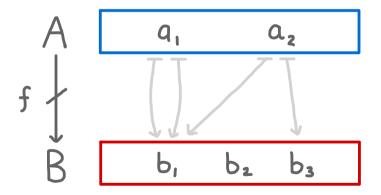


There is an equivalence of categories: Cat/B ~ [B, Span] lax

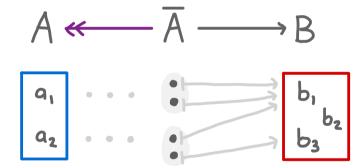
MULTI-VALUED FUNCTIONS

For each element in the domain, there is at least one assigned element in the codomain.

(Not necessarily a relation!)

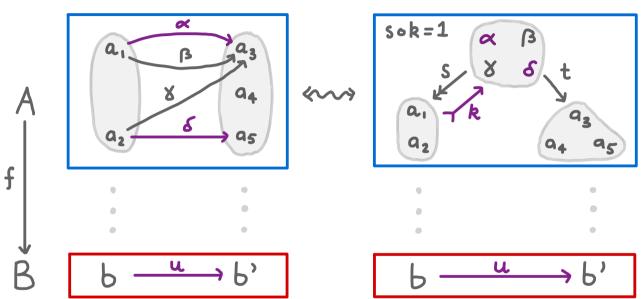


Multi-valued function \simeq span of functions whose left leg is a surjection.



Sets and multi-valued functions form a category Mult.

LENSES VIA MULTI-VALUED FUNCTIONS



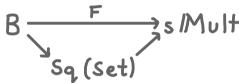
THEOREM: There is an equivalence of categories: $Lens(B) \simeq [B, s/Mult]_{lax}$

For each morphism u & B, there is a split multi-valued function between the fibres.

Ex: Chosen lifts are $k(a_1,u)=\alpha$ and $k(a_2,u)=\delta$.

NEW PERSPECTIVES ON KEY EXAMPLES

· Discrete opfibration \simeq lens such that F factors:



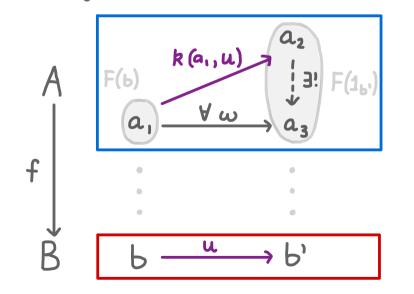
· Lens ~ diagram of functors

due to an adjunction (in Dbl):

 \cdot Split opfibration \simeq lens such that

$$F(b) \times_{F(b')} F(1_{b'}) \xrightarrow{k \times 1} F(u) \times_{F(b')} F(1_{b'}) \xrightarrow{comp} F(u)$$

is a bijection for all u:b→b'∈B.



SUMMARY AND FUTURE WORK

· Lenses may be characterised via multi-valued functions:

- · Generalises similar results for:
 - functions (B -> Set, Baset)
 - discrete optibrations (B Set)
 - split optibrations (B Cat)
 - -ordinary functors (B -> Span)

- · Applications in computer science:
- -Put-based lenses (Fischer, Hu, Pacheco)
- -Supervised learning using lenses

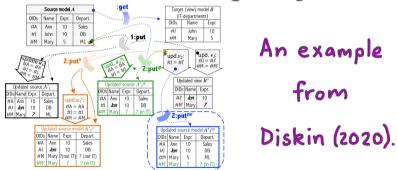


Fig. 1: Example of update propagation

- · Future work in mathematics:
- -Better understand sMult
- -Lenses as a framework for fibrations.