LAX DOUBLE FUNCTORS INTO Span-LIKE DOUBLE CATEGORIES

BRYCE CLARKE

AUSTRALIAN CATEGORY SEMINAR 30 SEPTEMBER 2020

OUTLINE OF THE TALK

- 0) The category of elements
- 1) Background on double categories
- 2) A generalised category of elements via lax double functors into Span
- 3) Lax double functors into IRel, IPar, Mult

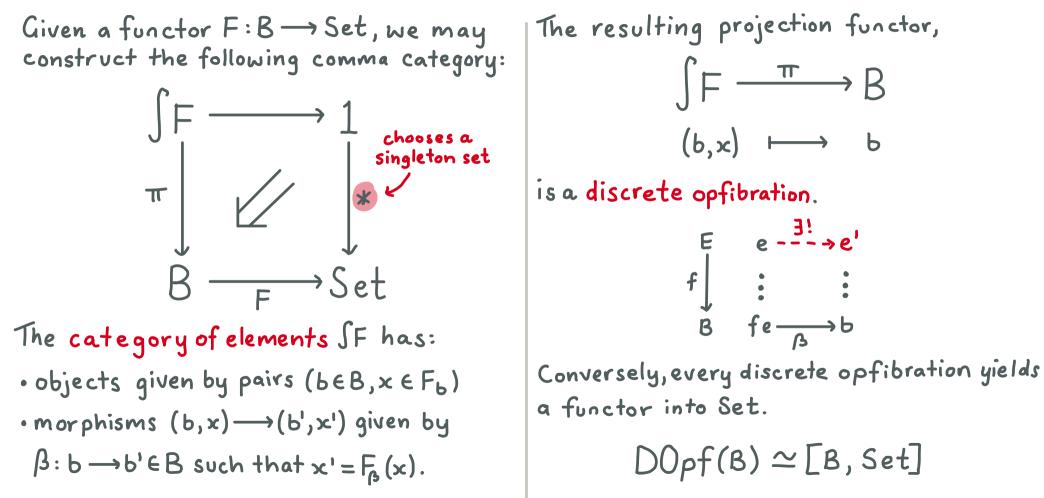
4) Brief review of lenses

- 5) A certain construction on double categories
- 6) Lenses as lax double functors:

$$lens(B) \sim [WB, s/Mult]_{lax}$$

7) Summary

BACKGROUND: THE CATEGORY OF ELEMENTS

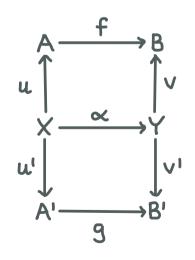


- A double category /A consists of: • a collection of objects A, B,...
- horizontal morphisms $f: A \rightarrow B, ...$
- vertical morphisms u: A → A',...
- · cells given by diagrams:

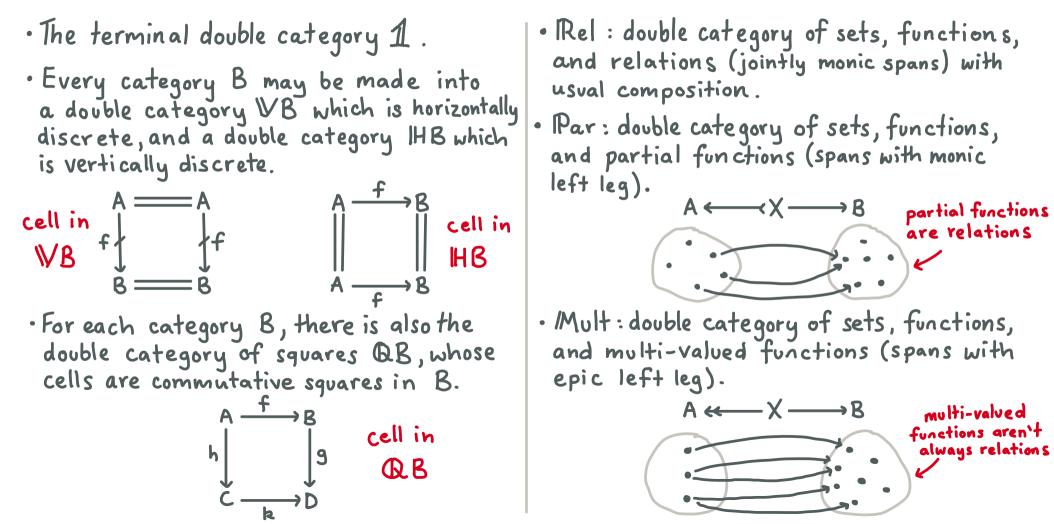
$$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow & \swarrow & \downarrow \\
A' \xrightarrow{g} B'
\end{array}$$

Horizontal composition is strict, while vertical composition is associative up to comparison isocells.

- Main example: Span • objects are sets;
- horizontal morphisms are functions;
 vertical morphisms are spans;
- cells are span morphisms:



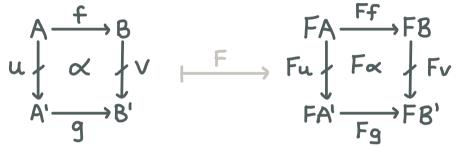
MORE EXAMPLES OF DOUBLE CATEGORIES



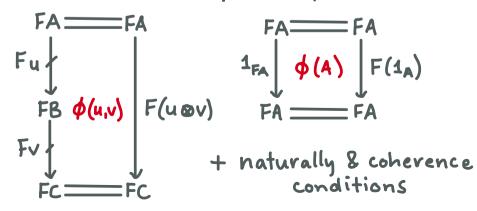
(4)

LAX DOUBLE FUNCTORS

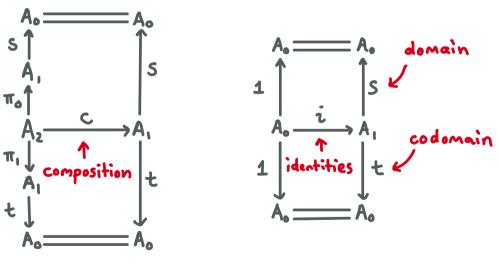
A lax double functor $F: A \rightarrow B$ is given by an assignment,



which preserves horizontal direction strictly, vertical direction up to comparison cells:



- · Also have colax, normal, strong, and strict double functors.
- Example: A lax functor 1⊥ → Span is the same as a small category.



• A lax functor $1 \longrightarrow \mathbb{R}el$ is the same as a preorder.

(5)

HORIZONTAL TRANSFORMATIONS

- A horizontal transformation $t: F \Rightarrow G$ between lax double functors $F,G: A \rightarrow B$ consists of:
- for each object A in /A, a horizontal morphism tA: FA→GA in IB;
- ·for each vertical morphism u:A→B in A, a cell in B:

$$FA \xrightarrow{\pm A} GA$$

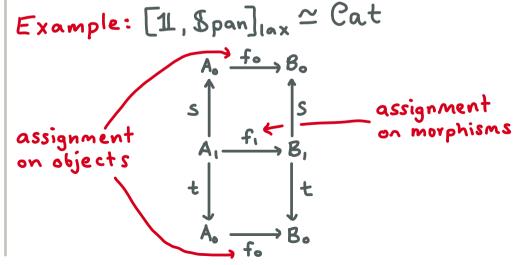
$$Fu = tu = fa$$

$$FB \xrightarrow{\pm B} GB$$

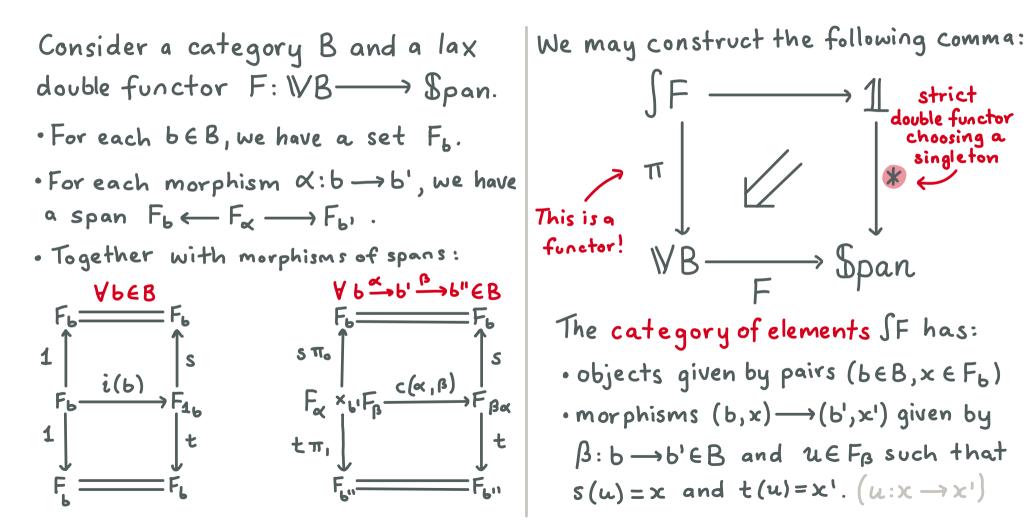
+ naturality & coherence conditions

Proposition: Given IA and IB, there is a category [IA, IB]_{lax} whose objects are lax double functors and whose morphisms are horizontal transformations.

Corollary: There is a 2-category Dbliax of double categories with homs [1A, IB]iax. (we could also consider stricter versions).



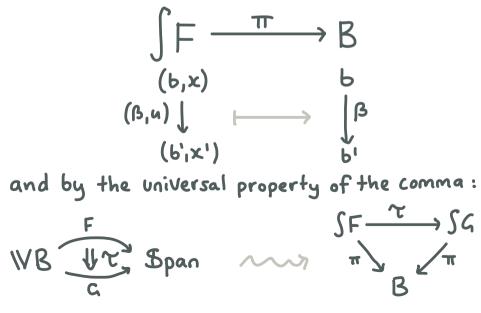
CATEGORY OF ELEMENTS FOR LAX DOUBLE FUNCTORS ()



FUNCTORS AS LAX DOUBLE FUNCTORS

Theorem: Given a category B,
$$[WB, Span]_{Iax} \simeq Cat/B.$$

Proof(sketch): For each F: WB→Span we obtain a functor,



Conversely, given a functor $f: A \rightarrow B$, define a lax double functor $WB \xrightarrow{F} Span$ via the fibre sets:

$$F_b = f^{-1}(b) = \{a \in A \mid fa = b\}$$

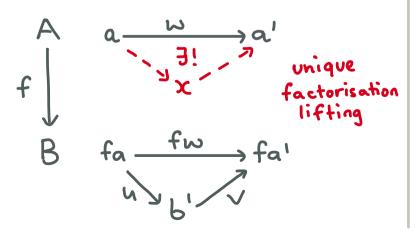
$$F_{\beta} = \{ u : a \rightarrow a' \in A \mid f_{u} = \beta : b \rightarrow b' \}$$

Functors $h: A \rightarrow C$ such that f = gh yield horizontal transformations via restrictions to the fibres $h_b: f^{-1}(b) \rightarrow g^{-1}(b)$, etc. \Box

See "Yoneda theory for double categories" by Paré for stronger result.

SPECIAL KINDS OF FUNCTORS

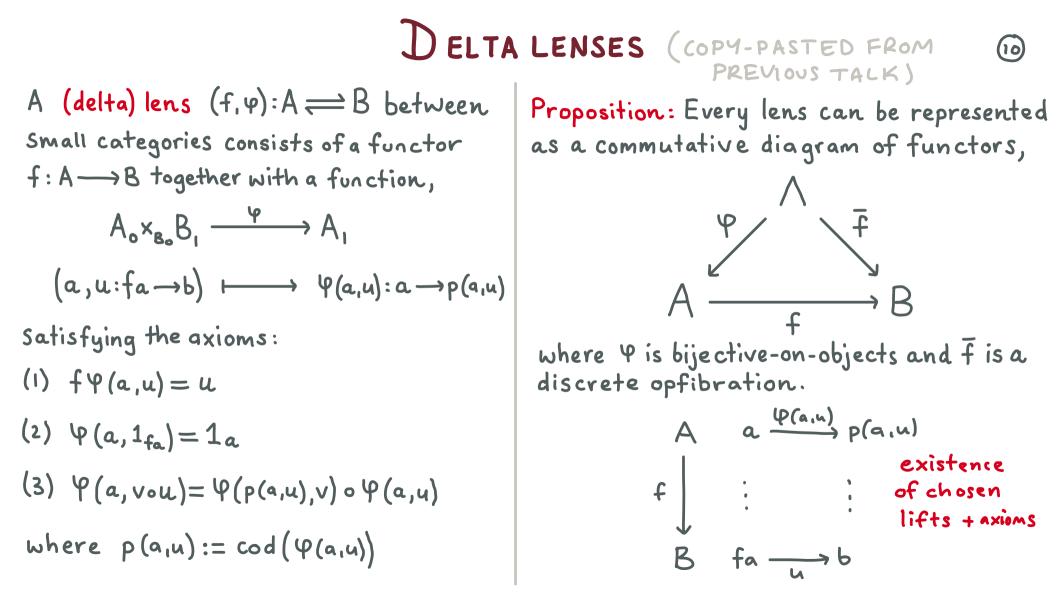
- Normal lax functors IVB → \$pan correspond to functors with discrete fibres.
- Strong/pseudo functors IV B → Span correspond to discrete Conduché fibrations. That is, functors with a certain lifting property:



·Lax functors WB ----> Rel correspond to faithful functors. · Lax functors WB -> IRel assigning each morphism B: b→b' to the span $F_b \xleftarrow{} F_b \times F_{b'} \xrightarrow{} F_{b'}$ are fully faithful. · Lax functors IVB -> IPar correspond to faithful functors which satisfy a certain property: uniqueness of lifts if $fu=fv=\beta$ then u = V. (this implies

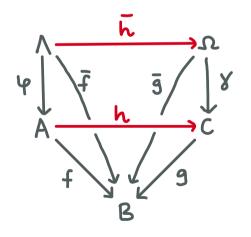
9

discrete fibres)



LENSES AS LAX DOUBLE FUNCTORS?

- For each small category B, there is a category Lens (B) whose:
- objects are lenses with codomain B;
- -morphisms are functors which make the following diagram commute:



i.e. functors h that preserve the chosen lifts: hφ(a,u)= δ(ha,u) Central question: Does there exist a double category ID such that: Lens(B) \simeq [NB, ID]_{Iax}

(11)

- ID should be closely related to both Q(Set) and Span, since lenses involve both discrete opfibrations and functors.
- Not every functor admits a lens structure ; can we find necessary conditions?

MULTI-VALUED FUNCTIONS

• Recall that a multi-valued function is given by a span of functions:

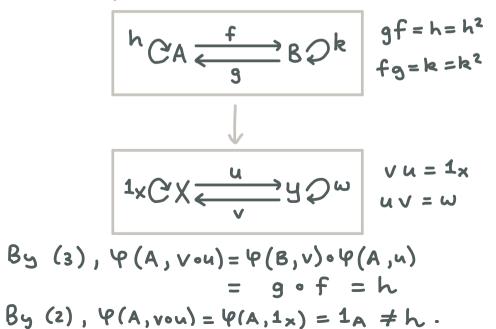
V K V

- A lax double functor WB → Mult corresponds to functors with a certain lifting property:
 - A $a \xrightarrow{3w} a^{\prime}$ existence of lifts 3w s.t. fw=u.B $fa \xrightarrow{u} b$
- If there exists an opcartesian lift for each (a, u:fa→b), then f is an op fibration.

 This property is necessary for a functor to have a lens structure, but not sufficient!

(12)

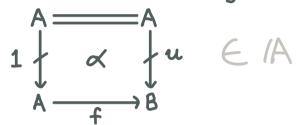
· Example : Consider a functor



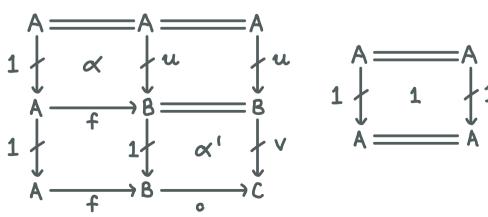
DIGRESSION: A CONSTRUCTION ON DOUBLE CATEGORIES ()

Let /A be a (unital) double category. There is a double category A with:

- · same objects and horizontal morphisms
- · vertical morphisms given by cells:



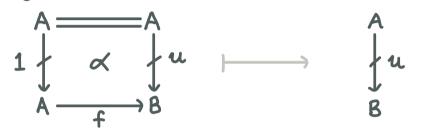
· Vertical composition and identifies:



• cells with boundary $h: A \rightarrow C$, $k: B \rightarrow D$, $\alpha: \left(A \begin{array}{c} A \\ f \end{array}\right) \text{ and } \beta: \left(C \begin{array}{c} C \\ q \end{array}\right) \text{ given by }$ cells, $A \xrightarrow{h} c$ $u \neq \psi \neq v \in A$ such that $A = A \xrightarrow{h} c$ 1 / x u/ y /v $A \xrightarrow{f} B \xrightarrow{k} D$ $= 1 + 1_h 1 + \beta + \vee$ →し —

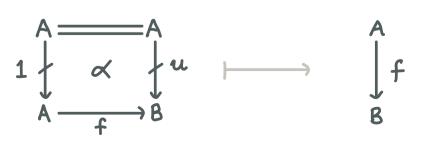
CONSTRUCTION (CONTINUED)

There is a strong double functor
 A → /A which is the identity on
 objects/horizontal morphisms:

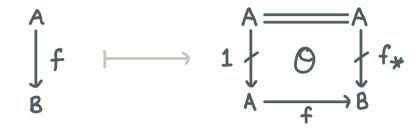


 There is also a strong double functor

 A <u>U</u>, Q (Hor/A) given on vertical morphisms by:

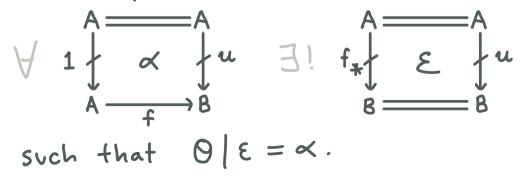


• If IA has companions, then U has a left adjoint F which assigns each vertical arrow to its companion:



(14)

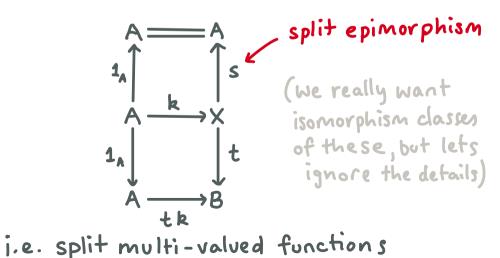
• The unit for the adjunction is the identity, and the counit is given by the universal property of the companion cell:



THE DOUBLE CATEGORY OF SPLIT MULTI-VALUED FUNCTIONS (5)

We may apply our construct to A=Span. • Vertical composition is given by pullback: The double category of split multi-valued functions slMult has:

objects are sets;
horizontal morphisms are functions;
vertical morphisms are cells in Span:



• A cell is a commutative diagram: [s' t'g=ht $\xrightarrow{9} X' \qquad s'g = fs \\ \downarrow t' \qquad gk = k'f$ forget forget property

AN ADJUCTION OF DOUBLE CATEGORIES

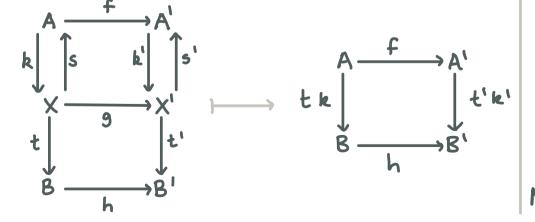
We have an adjunction of double categories (in the 2-category Dbl):

since Span

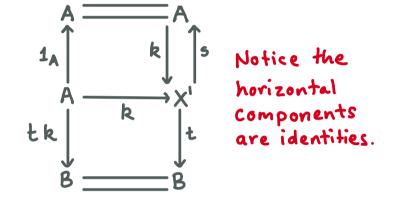
has companions

$$\mathbb{Q}(Set) \xrightarrow{\mathcal{L}} SMult$$

The right adjoint has action on cells:



The counit for the adjunction takes a split multi-valued function to the cell:



Notice the

[6]

Thus we have a horizontal transformation between strict double functors:

LENSES AS LAX DOUBLE FUNCTORS INTO SMULT 1

Theorem: Given a category B, Lens (B) \simeq [VB, s/Mult]_{lax} Proof (sketch): Given a lens (f, φ): A \rightleftharpoons B, for each u: b \rightarrow b' \in B, we have a span from the functor f:

Fb Fu t

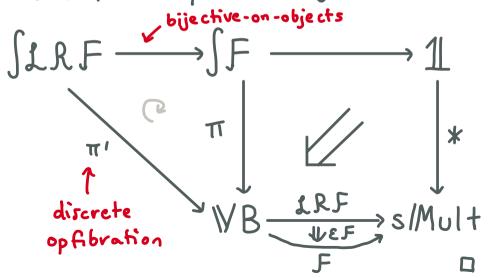
But from the cofunctor part of the lens, for each $a \in F_b$ and $u: b \longrightarrow b'$, there exists $\Psi(a,u):a \longrightarrow a' \in F_u$, giving the following:

$$S \circ \varphi = 1$$

 F_{b}
 F_{b}
 $F_{b'}$

The axioms of a lens ensure these split multi-valued functions behave well with identities and composition, to give a lax double functor $F: WB \longrightarrow s/Mult$.

Conversely, given F: WB -> s Mult, we get a lens via the comma construction and the counit for the previous adjonction:



SUMMARY & FURTHER QUESTIONS

 Discrete opfibrations are special kinds of lenses, so we were motivated to generalise the category of elements:

 $DOpf(B) \simeq [B, Set]$

• We examined a generalised version involving lax double functors:

 $Cat/B \simeq [WB, Span]_{Iax}$

- We saw how special kinds of functors could be obtained by restricting this result.
- The main result was to show :

 $lens(B) \simeq [WB, s|Mu|t]_{lax}$

· What is the category theory underlying the construction of A?

- Can we see lenses as lax <u>normal</u> double functors IVB — Mod (sMult) ?
- What are the exponentiable objects in Lens(B)? For which B?
- Can we characterise which lax double functors IVB→s/Mult yield split opfibrations?
- Previously we saw that Lens (B) is monadic over Cat/B; can we gain a clearer perspective via the adjunction:
 [WB, s/Mult]_{lax} = [WB, Span]_{lax}

SUMMARY & FURTHER QUESTIONS

 Discrete opfibrations are special kinds of lenses, so we were motivated to generalise the category of elements:

 $DOpf(B) \simeq [B, Set]$

• We examined a generalised version involving lax double functors:

 $Cat/B \simeq [WB, Span]_{Iax}$

- We saw how special kinds of functors could be obtained by restricting this result.
- The main result was to show :

 $lens(B) \simeq [WB, s|Mu|t]_{lax}$

· What is the category theory underlying the construction of A?

- Can we see lenses as lax <u>normal</u> double functors IVB — Mod (sMult) ?
- What are the exponentiable objects in Lens(B)? For which B?
- Can we characterise which lax double functors IVB→s/Mult yield split opfibrations?
- Previously we saw that Lens (B) is monadic over Cat/B; can we gain a clearer perspective via the adjunction:
 [WB, s/Mult]_{lax} = [WB, Span]_{lax}