Characterising split opfibrations using lenses

Bryce Clarke Wednesday 4 December 2019 63rd Annual Meeting of the Australian Mathematical Society

CoACT, Macquarie University bryce.clarke1@students.mq.edu.au

Motivation

Idea

Split opfibration = functor + lifting + universal property

- Split opfibrations are functors equipped with a suitable choice of opcartesian lifts.
- Cat-valued functors \simeq split opfibrations
- **Cat**(*E*)-valued internal functors → internal split opfibrations
- (internal) split opfibrations = algebras for a particular monad
 = functor + (lifting + universal property)
- **Problem**: these definitions appear to be quite different.
- **Solution**: characterise split opfibrations using delta lenses. Split opfibrations = (functor + lifting) + universal property

Background

Discrete opfibrations

Definition

A functor $G: \mathbf{S} \to \mathbf{V}$ is a discrete opfibration if for all objects Sin \mathbf{S} and morphisms $\alpha: GS \to V$ in \mathbf{V} , there exists a unique morphism $\widehat{\alpha}: S \to S'$ such that $G\widehat{\alpha} = \alpha$.

Every functor $F : \mathbf{V} \to \mathbf{Set}$ yields a discrete opfibration $\int F \to \mathbf{V}$ via Grothendieck construction, and vice versa.

Definition

A morphism $u: S \to S'$ in **S** is opcartesian if for all morphisms $f: S \to S''$ in **S** and $\beta: GS' \to GS''$ in **V** such that $\beta \circ Gu = Gf$, there exists a unique morphism $\widehat{\beta}: S' \to S''$ such that $G\widehat{\beta} = \beta$ and $\widehat{\beta} \circ u = f$.

Thus opcartesian morphisms satisfy a universal property.

Split opfibrations

Definition

A split opfibration is a pair (G, k) consisting of a functor $G: \mathbf{S} \to \mathbf{V}$ together with a function k, called a *splitting*,

$$(S, \alpha \colon GS \to V) \longmapsto k(S, \alpha) \colon S \to p(S, \alpha)$$

satisfying the following axioms:

(1) $Gk(S, \alpha) = \alpha$ (2) $k(S, 1_{GS}) = 1_S$ (3) $k(S, \beta \circ \alpha) = k(p(S, \alpha), \beta) \circ k(S, \alpha)$ (4) Each $k(S, \alpha)$ is opcartesian.

Every functor $F : \mathbf{V} \to \mathbf{Cat}$ yields a split opfibration $\int F \to \mathbf{V}$ via Grothendieck construction, and vice versa.

Characterising split opfibrations using lenses and décalage

Delta lenses

Definition (Diskin, Xiong, Czarnecki, 2011)

A delta lens is a pair (G, k) consisting of a functor $G: \mathbf{S} \to \mathbf{V}$ together with a function k, called a *lifting* (or *put*),

$$(S, \alpha \colon GS \to V) \longmapsto k(S, \alpha) \colon S \to p(S, \alpha)$$

satisfying the following axioms:

(1)
$$Gk(S, \alpha) = \alpha$$

(2)
$$k(S, 1_{GS}) = 1_S$$

(3) $k(S, \beta \circ \alpha) = k(p(S, \alpha), \beta) \circ k(S, \alpha)$

A split opfibration is a delta lens where each $k(S, \alpha)$ is opcartesian.

Characterising delta lenses using functors

Lemma

Every delta lens (G, k): $\mathbf{S} \to \mathbf{V}$ induces a category $\mathbf{\Lambda}$ with the same objects as \mathbf{S} and with morphisms given by formal pairs:

$$S \xrightarrow{(S,\alpha)} p(S,\alpha)$$

Proposition

Every delta lens may be represented as a diagram in Cat given by,

where K is identity-on-objects and \overline{G} is a discrete opfibration.

Definition

There is a comonad Dec_r on **Cat** called the right décalage which assigns to each category **S** the sum of its slice categories:

$$\mathsf{Dec}_{\mathsf{r}}(\mathsf{S}) = \sum_{X \in \mathsf{S}} \mathsf{S} / X$$

The counit components are *discrete fibrations* given by:

Main Theorem

Theorem

A delta lens (G, k): $\mathbf{S} \to \mathbf{V}$ is a split opfibration if and only if the composite functor F shown below is a discrete opfibration.

Split opfibration = delta lens + universal property

Characterising split opfibrations using lenses and double categories

Split opfibrations as algebras for a monad

Let **V** be a category. There is a monad M on the slice category **Cat** / **V** whose action on objects is given by,

 $G: \mathbf{S} \to \mathbf{V} \quad \longmapsto \quad \Pi_{\mathbf{V}}: G \downarrow \mathbf{V} \to \mathbf{V}$

where $\Pi_{\mathbf{V}}$ is the comma category projection.

Definition (Street, 1974)

A split opfibration is an algebra for the monad M.

Unpacking: split opfibration is a pair (G, P) consisting of functors $G: \mathbf{S} \to \mathbf{V}$ and $P: G \downarrow \mathbf{V} \to \mathbf{S}$ such that $GP = \prod_{\mathbf{V}}$.

Split opfibration = functor + structure map

Generalises to any 2-category with pullbacks and comma objects.

Does this definition make sense?

Consider a split opfibration given by the pair (G, P), where the functor $P: G \downarrow \mathbf{V} \rightarrow \mathbf{S}$ has action on morphisms given by:

$$\begin{array}{cccc} GS & \xrightarrow{\alpha} & V & & P(S, \alpha) \\ G(f) \downarrow & & \downarrow^{\beta} & \longmapsto & & \downarrow^{P\langle f, \beta \rangle} \\ GS' & \xrightarrow{\alpha'} & V' & & P(S', \alpha') \end{array}$$

Proposition

Every split opfibration (G, P) yields a split opfibration of the form (G, k) where $k(S, \alpha) = P\langle 1_S, \alpha \rangle$ as depicted below:

$$\begin{array}{ccc} GS \xrightarrow{1_{GS}} GS & & S \\ G(1_{S}) \downarrow & \downarrow^{\alpha} & \longmapsto & \downarrow^{P\langle 1_{S}, \alpha \rangle} \\ GS \xrightarrow{\alpha} V & & P(S, \alpha) \end{array}$$

Double categories

A double category is an internal category in Cat.

Lemma

Every split opfibration (G, P): $\mathbf{S} \to \mathbf{V}$ induces a double category \mathbb{A} with domain and codomain maps given by $\Pi_{\mathbf{S}}, P \colon G \downarrow \mathbf{V} \rightrightarrows \mathbf{S}$.

Proposition

Every split opfibration may be represented as a diagram in **Dbl** given by,

where \mathcal{K} is identity-on-objects and $\overline{\mathcal{G}}$ is a discrete opfibration.

i.e. a lens *internal* to **Cat** between the double categories of squares.

Lemma

Every split opfibration (G, k): $\mathbf{S} \to \mathbf{V}$ induces a double category \mathbb{B} with domain and codomain maps given by $\Pi_0, \Pi_1 \colon K \downarrow K \rightrightarrows \Lambda$.

Proposition

Every split opfibration (G, k): **S** \rightarrow **V** may be represented as a diagram in **Dbl** given by:

where \mathbb{B} is isomorphic to the transpose of $\mathbb{A} = (G \downarrow \mathbf{V} \rightrightarrows \mathbf{S})$.

Summary

Summary of the talk

Key idea Split opfibration = delta lens + universal property

- Delta lenses capture the *structure* of a split opfibration.
- Every split opfibration is a delta lens (G, k) where each lift k(S, α) has the *property* of being opcartesian.
- A delta lens is a split opfibration iff its representation in **Cat** satisfies a condition with respect to the right décalage.
- Every split opfibration may be represented as a diagram in **Dbl**
 an *internal lens* between the double categories of squares.
- **Benefits**: Results generalise to **Cat**(\mathcal{E}); new proofs of old results on split opfibrations; and clearer understanding.