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What is a lens?

• It depends on who you ask . . .

• Lenses are a mathematical structure which aim to capture the notion of

synchronisation between a pair of systems (e.g. databases).

• Originally lenses were defined to precisely present synchronisation between a

pair of sets, called state-based lenses.

• However when generalising to categories, there are at least two useful ways

to define lenses: split opfibrations1 and (asymmetric) delta lenses2.

• In this talk, I will show how delta lenses may be internalised to a category

with pullbacks and motivated as a kind of monad morphism.

• Link: Internal lenses as functors and cofunctors, Proceedings of ACT2019.
1Called “c-lenses” in: Johnson, Rosebrugh, Wood, Lenses, fibrations and universal translations (2012)
2Diskin, Xiong, & Czarnecki, From State- to Delta-Based Bidirectional Model Transformations: the

Asymmetric Case (2011)
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Split opfibrations

A a p(a, β) a′

B F (a) b b′

F ...

k(a,β)

αα

...

∃!

...

∃!

...
β

γβF (α) = γβ

γ γ

A split opfibration is a functor F : A→ B such that for all pairs (a, β) as shown,

there is a morphism k(a, β) : a→ p(a, β) with F (p(a, β)) = b such that:

1. Fk(a, β) = β

2. The morphisms k(a, β) are opcartesian, satisfying the universal property

illustrated above, thus defining a cleavage.

3. The cleavage respects identities and composition, thus defining a splitting.
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Delta lenses

A a p(a, β)

B F (a) b

F ...

k(a,β)

α

...

∃!

...
β

γβ

γ

A delta lens is a functor F : A→ B such that for all pairs (a, β) as shown, there

is a morphism k(a, β) : a→ p(a, β) with F (p(a, β)) = b such that:

1. Fk(a, β) = β

2. The morphisms k(a, β) are opcartesian, satisfying the universal property

illustrated above, thus defining a cleavage.

3. The lifting k respects identities and composition.
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Cofunctors (not contravariant functors!)

A a p(a, β)

B F (a) b

...

k(a,β)

α

...

∃!

...
β

γβ

γ

A cofunctor is an function F : A0 → B0 such that for all pairs (a, β) as shown,

there is a morphism k(a, β) : a→ p(a, β) with F (p(a, β)) = b such that:

1. Fk(a, β) = β

2. The morphisms k(a, β) are opcartesian, satisfying the universal property

illustrated above, thus defining a cleavage.

3. The lifting k respects identities and composition.
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A brief history of cofunctors

• First defined by Higgins & Mackenzie3 as “comorphisms” between vector

bundles, modules, Lie algebroids, and Lie pseudo-algebras.

• Generalised by Aguiar4 where “cofunctors” are between categories internal

to a monoidal category with equalizers.

• Rediscovered by Ahman & Uustalu5 as directed container morphisms or

“split pre-opcleavages”.

• Considered recently in talks by Garner (groupoids and cofunctors)6, Cockett

(internal partite categories and cofunctors)7 and Paré (Retrocells, CT2019).
3Duality for base-changing morphisms of vector bundles, modules, Lie algebroids and Poisson structures (1993)
4Internal Categories and Quantum Groups (1997)
5Directed Containers as Categories (2016)
6Inner automorphisms of groupoids, Australian Category Seminar (13 March 2019)
7Hyperconnections, Australian Category Seminar (20 March 2019)
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A review of formal monads

A monad8 (A, t) in a 2-category K consists of an object A, a 1-cell t : A→ A

and 2-cells η : 1A → t and µ : t2 → t such that the following diagrams commute:

t t2 t

t

tη

1
µ

ηt

1

t3 t2

t2 t

tµ

µt µ

µ

We may similarly define a monad in a bicategory by inserting the unitors and

associator where appropriate.

8Street, The Formal Theory of Monads (1972) and Lack, Street, The Formal Theory of Monads II (2002)
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Example: Internal categories are monads in Span(E)

Let E be a category with pullbacks, and Span(E) the bicategory of spans in E .

A monad in Span(E) consists of an object A0 and a span,

A1

A0 A0

s0 t0

together with morphisms of spans,

A0

A0 A1 A0

1A0
1A0

i

s0 t0

A1 A2 A1

A0 A1 A0

s0

s1 t1

c t0

s0 t0

satisfying some conditions. This defines an internal category in E .
8 / 25
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Lax and colax monad morphisms

A lax monad morphism (A, t)→ (B , s) consists of a 1-cell f : A→ B and a 2-cell

φ : sf → ft such that the following diagrams commute:

f

sf ft

ηf f η

φ

ssf sft ftt

sf ft

sφ

µf

φt

f µ

φ

A colax monad morphism (A, t)→ (B , s) consists of a 1-cell f : A→ B and a

2-cell ψ : ft → sf such that the following diagrams commute:

f

ft sf

f η ηf

ψ

ftt sft ssf

ft sf

ψt

f µ

sψ

µf

ψ
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Internal functors as monad morphisms in Span(E)

• Since monads in Span(E) are internal categories, we might expect that the

monad morphisms give internal functors . . . but they do not (in general).

• Internal functors are colax monad morphisms whose 1-cell is a left adjoint.

• A left adjoint 1-cell in Span(E) is a span whose left leg is an identity:

A0

A0 B0

1A0 f0

• The corresponding 2-cell simplifies to a morphism f1 : A1 → B1 satisfying:

A0 A1 A0

B0 B1 B0

f0

s0 t0

f1 f0

s0 t0
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What are the lax monad morphisms in Span(E)?

• Given that internal functors are important, we may also wish to consider the

corresponding dual notion.

• Internal cofunctors are lax monad morphisms whose 1-cell is a left adjoint.

• The corresponding 2-cell for an internal cofunctor amounts to a morphism

k1 : A0 ×B0 B1 → A1 making the diagram commmute:

A0 A1 A0

A0 A0 ×B0 B1 A0

B0 B1 B0

s0 t0

1A0

f0

k1

π1

π0 t0k1

x

1A0

f0

s0 t0
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What is a cofunctor in Span(Set)?

• A cofunctor Λ: B
 A should be understood as a kind of lifting.

A a p(a, β)

B f (a) b

f k ...

k(a,β)

...
β

• The codomain p(a, β) of the lift should satisfy f (p(a, β)) = b.

• The lifting should respect both identities and composition.

• Examples of cofunctors include:

• Discrete opfibrations and split opfibrations;

• Identity-on-objects functors, such as monoid and group homomorphisms;

• State-based lenses and delta lenses (!)
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Cofunctors as spans of functors

• Every internal cofunctor may be represented as a span of internal functors,

Λ

B A

F K

where F is a discrete opfibration9 and K is an identity-on-objects functor.

• These functors appear immediately in the definition of an internal cofunctor:

A0 A0 ×B0 B1 A0

B0 B1 B0

f0

π0 t0k1

π1
x

f0

s0 t0

A0 A0 ×B0 B1 A0

A0 A1 A0

1A0

π0 t0k1

k1 1A0

s0 t0

9Also called an internal diagram, an internal E-valued functor, or an internal copresheaf.
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Composition of cofunctors

• Composing cofunctors is more difficult than composing functors; despite

both arising from composition of the corresponding monad morphisms.

• However when a cofunctor is represented as a span of functors, composition

is just via pullback.

Ω×B Λ

Ω Λ

C B A

y

G J F K

• Every cofunctor may be factorised into a discrete opfibration part and an

identity-on-objects functor part.

14 / 25
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Internal lenses as monad morphisms

• An internal lens is a lax monad morphism (A, t)→ (B , t) whose 1-cell

f : A→ B is a left adjoint and whose 2-cell φ : sf � ft is a section.

• An internal lens is a functor (f0, f1) and a cofunctor (f0, k1) satisfying:

A0 ×B0 B1

A1 B1

k1 π1

f1

• An internal lens is a commuting diagram of internal functors,

Λ

A B

K F

F

where F is a discrete opfibration and K is an identity-on-objects functor.
15 / 25
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Examples of internal lenses

• A delta lens is exactly an internal lens in Set.

• A state-based lens consisting of functions,

g : S → V p : S × V → S

is a delta lens between codiscrete categories, where:

k1 = 〈π0, p〉 : S × V → S × S

• A delta lens between monoids is exactly a retraction.

• A discrete opfibration is an internal lens in Set where k1 is an isomorphism.

• A split opfibration is an internal lens in Cat between double categories of

squares, where k1 is a left-adjoint right-inverse functor between categories:

(F ↓ B) A21

k1a
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Natural transformations between (co)functors

A natural transformation between

internal functors F ,G : A→ B is given

by a morphism σ : A0 → B1 such that:

A0

B0 B1 B0

f0 g0
σ

s0 t0

Represented by the diagram:

A B

F

G

σ

A natural transformation between

internal cofunctors Λ,Ω: B
 A is given

by a morphism τ : A0 → A1 such that:

A0 B0

A0 A1 A0

1A0
τ

f0

h0

s0 t0

g0

Actually just given by a diagram:

Λ

B A

Ω

F K

H

G J

τ

17 / 25
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Natural transformations between lenses

A natural transformation between internal lenses (F ,Λ), (G ,Ω): A
 B consists

of natural transformations between the functor and cofunctor parts such that:

Λ

A B

Ω

K

H

F

G

σ

J

τ
=

Λ

B

Ω

H

F

G

• We have a 2-category Lens(E) of whose objects are internal categories,

morphisms are internal lenses, and 2-cells are natural transformations.

• There are forgetful 2-functors to the 2-categories Cat(E) and Cof(E).
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Summary

• Both cofunctors and lenses capture the notion of lifting morphisms between

categories.

• Internal lenses are lax monad morphisms in Span(E) whose 1-cell is a left

adjoint and whose 2-cell is a section.

• Every internal lens is a functor and a cofunctor, and may be represented as a

particular commuting triangle of functors.

• There is a diagram of forgetful (2-)functors between (2-)categories:

Cofop(E)

DOpf(E) Lens(E) E

Cat(E)

19 / 25
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Spans of internal lenses

• Internal lenses capture inherently asymmetric relationship, however often

applications require a kind of symmetric synchronisation10.

• The obvious way generalise is to consider morphisms from the bicategory

Span(Lens(E)) whose 1-cells are spans of internal lenses . . .

Λ C Ω

A B

K

F F G

J

G

• . . . however it is not known how to compute pullbacks in Lens(E).

• Fortunately we can canonically construct “fake pullbacks” of internal lenses

which are sent to genuine pullbacks by the functor Lens(E)→ Cat(E).
10Diskin, et al., From State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case (2011)
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Motivating symmetric lenses

• Given a span of internal lenses, we may compose the functors to obtain:

Λ

A B

Ω

F GK

FJ G

! A B
/

/

• We know how to compose in Span(Cat(E)) and discrete opfibrations are

stable under pullback – this could be a better notion for “symmetric lenses”.

• Notice the above diagram is simply a pair of spans of functors whose:

• left leg is a discrete opfibration;

• underlying span of object assignments are opposite.

• These spans are similar to both functors and cofunctors, but what are they?
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Mealy morphisms as lax monad morphisms

• An (internal) Mealy morphism11 is a lax monad morphism in Span(E).

• The 1-cell is a span in E while the 2-cell corresponds to the diagram:

A0 A1 A0

X0 X0 ×B0 B1 X0

B0 B1 B0

s0 t0

g0

f0

g1

π1

π0 p0

x

g0

f0

s0 t0

• Mealy morphisms are also known as two-dimensional partial maps between

categories, and are classified by the Fam construction.
11Paré, Mealy Morphisms of Enriched Categories (2012)
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Mealy morphisms as spans of functors

• Every Mealy morphism B 9 A may be represented as a span of internal

functors,

X

B A

F G

where F is a discrete opfibration.

• Functors and cofunctors are both examples of Mealy morphisms.

• Using the (bo, ff)-factorisation in Cat(E), every Mealy morphism factorises

into a cofunctor and a (fully faithful) functor, where im(F ) is the full image.

X im(G )

B im(G ) A

F Gbo 1 Gff

23 / 25
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Symmetric lenses as Mealy morphisms

• A symmetric lens12 is a pair of compatible Mealy morphisms:

A B
/

X +

/

X−

!

X+

A B

X−

F G

F G

 

X0

A0 B0

X0

f0 g0

f0
g0

Compatibility means the underlying object spans are opposite, as depicted.

• Every symmetric lens induces a span of internal lens,

X+ im(F0 × G0) X−

A B
F G

via the (bo, ff)-factorisation of the functor F0 × G0 : X0 → A× B.
12Johnson, Rosebrugh, Symmetric Delta Lenses and Spans of Asymmetric Delta Lenses (2017) 24 / 25
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Summary (again)

• Both cofunctors and lenses capture the notion of lifting morphisms between

categories.

• Internal lenses are lax monad morphisms in Span(E) whose 1-cell is a left

adjoint and whose 2-cell is a section.

• Every internal lens is a functor and a cofunctor, and may be represented as a

particular commuting triangle of functors.

• Every symmetric lens is a compatible pair of Mealy morphisms, or

equivalently, a span of internal lenses.

• More details can be found in the extended abstract linked below:

Internal lenses as functors and cofunctors, Proceedings of ACT2019.

25 / 25

http://www.cs.ox.ac.uk/ACT2019/preproceedings/Bryce%20Clarke.pdf
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