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ABSTRACT. We consider the problem of constructing the free bifibration generated by a
functor of categories p : D — €. This problem was previously considered by Lamarche, and
is closely related to the problem, considered by Dawson, Paré, and Pronk, of “freely adjoining
adjoints” to a category. We develop a proof-theoretic approach to the problem, beginning
with a construction of the free bifibration A, : Bif(p) — € in which objects of Bif(p) are
formulas of a primitive “bifibrational logic”, and arrows are derivations in a cut-free sequent
calculus modulo a notion of permutation equivalence. We show that instantiating the
construction to the identity functor generates a zigzag double category Z(C), which is also
the free double category with companions and conjoints (or fibrant double category) on
C. The approach adapts smoothly to the more general task of building (P, N)-fibrations,
where one only asks for pushforwards along arrows in P and pullbacks along arrows in N
for some subsets of arrows, which encompasses Kock and Joyal’s notion of ambifibration
when (P,N) form a factorization system. We establish a series of progressively stronger
normal forms, guided by ideas of focusing from proof theory, and obtain a canonicity result
under assumption that the base category is factorization preordered relative to P and N.
This canonicity result allows us to decide the word problem and to enumerate relative
homsets without duplicates. Finally, we describe several examples of a combinatorial nature,
including a category of plane trees generated as a free bifibration over w, and a category of
increasing forests generated as a free ambifibration over A, which contains the lattices of
noncrossing partitions as quotients of its fibers by the Beck-Chevalley condition.

INTRODUCTION

A functor p: D — € between two categories is a bifibration when, roughly speaking, objects
of D may be pushed and pulled along arrows of €. If we visualize the category D as living over
the category € and mapping downwards via the functor, then the structure of a bifibration
on p allows the arrows of € to be lifted upwards into the category D, in two different kinds
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of ways. Formally, for any arrow f: A — B in € and any object S in D such that p(S) = A,
there should be an object f*S and an arrow fs: S — TS of D such that p(fs) = f,

D s -5, 8
7|
e A1 . p

which are universal in the sense that for any arrow g : B — C' in € and arrow o : S — T in
D such that p(a) = fg,! there is a unique arrow 3 : f*S — T such that a = f5 3.

§—— o 7 s, s
= (0.1)
f g f g
A—— B ——=C A B C

We refer to the object f S as the pushforward of S along f, and to the arrow fg: S — ft S
as a +-cartesian lifting of f to S. Note that the universal property of +-cartesian liftings
ensures that the pushforward f* S is determined up to unique isomorphism lying over the
identity arrow idp, which is what justifies speaking of “the” pushforward of S along f.
Dually, for any arrow g : B — C'in € and object 7" in D such that p(7T") = C, there should
be an object g~ T and an arrow gy : g T — T of D such that p(gr) = g,

B—%

again universal in the sense that for any arrow f: A — B in C and arrow o« : S — T in D
such that p(a) = fg, there is a unique arrow 3 : S — g~ T such that o = 8 gp.

S S | (AR AL N
- (0.2)
/ g f g
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We refer to the object g~ T as the pullback of T along g, and to the arrow gy : g~ T — T as
a —-cartesian lifting of g to T'. Again, the universal property of —-cartesian liftings ensures
that the pullback g~ 7" is determined up to unique isomorphism lying over idp.

An immediate consequence of the definitions is that if p: D — € is a bifibration then
there is a one-to-one correspondence

S —— fT S ——T ffs$——TmT
— — (0.3)
A ida A A f B B idg B

Here and throughout the paper we notate composition of arrows by juxtaposition in diagrammatic order,
except in a few places where we explicitly write the composition symbol o to mean go f = fg.
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of arrows in D living over the corresponding arrows in €. As a consequence, every arrow
f:A— B of € induces an adjunction

realized by the operations of pushing and pulling along f, where D4 and Dpg are the fiber
categories of A and B relative to the functor p, defined as the subcategories of D spanned
by the arrows living over the identities id4 and idg in €. More precisely, the functors f+
and f~ can be defined given any specific choice of cartesian liftings in D, corresponding to
a choice of bifibrational structure on p : D — €. Such a bifibrational structure is called a
“cleavage” or “cleaving”, and p is said to be a cloven bifibration. We will always be working
with bifibrational structures in this paper and so we usually omit the adjective “cloven”.

The categorical notion of bifibration was originally introduced by Grothendieck [17,
VI], together with fibration and cofibration, the latter nowadays more commonly called
opfibration. A functor p: D — € is a fibration (respectively opfibration) when one can pull
(respectively, push) objects of D along arrows of C, so that p is a bifibration iff it is both
a fibration and an opfibration. As established by Grothendieck and which motivated the
original definition, the data of a cloven bifibration p : D — € is equivalent to the data of
a pseudofunctor F': € — Adj into the 2-category of small categories and adjunctions. A
bifibration over € is recovered from F' by defining the category of elements Se F (also called
the Grothendieck construction) to have objects given by pairs (A, S) of an object A € € an an
object S € F(A), and arrows (A, S) — (B,T) given by pairs (f,«) of an arrow A — B e €
and an arrow o : F(f)"(S) — T € F(B) or equivalently an arrow « : S — F(f)"(T) € F(A),
where we write F(f)" : F(A) — F(B) and F(f)” : F(B) — F(A) respectively for the left
and right adjoint associated to the adjunction F'(f). The category of elements is equipped
with an evident projection functor np : Se F — €, which is a bifibration.

We are interested in the problem of constructing the free bifibration on a functor,
meaning the following. Let p: D — € be an arbitrary functor. The free bifibration on p is a
category Bif(p) equipped with a functor A, : Bif(p) — € that is a bifibration, together with
a functor 7, : D — Bif(p) commuting with the projections to C:

D——"  Bif(p)

N

Moreover, this data is universal in the sense that for any other bifibration ¢ : € — € equipped
with a functor 6 : D — & such that g o 8 = p, there is a unique morphism of bifibrations
making the diagram below commute:

D—" 5 Bif(p)

[%
> Ap e (0.4)
lA‘lbration
¢
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By morphism of bifibrations, we mean a functor [—], : Bif(p) — € sending chosen +-
cartesian liftings to chosen +-cartesian liftings. A standard argument implies the universal
property of A, : Bif(p) — € extends to bifibrations over any base category into which € can
be mapped, in the sense that [—], below is uniquely determined from § : D — &, ¢: € — B,
and § : ¢ — B:

D —" 5 Bif(p)

(0.5)

q bifibration

In particular, (0.5) can be reduced to (0.4) by first pulling back ¢ along ¢ to a bifibration
over C, using the fact that bifibrations are closed under pullback along arbitrary functors.

Whereas the free fibration € | p — € and the free opfibration p | € — € on a functor
have simple and well-known descriptions, the free bifibration has been relatively little
studied, and is a more complex object. As far as we are aware there is only one direct
construction in the literature, in an unpublished manuscript by Francois Lamarche [29].
This construction was motivated by his work on a model of type theory in which dependent
types were Grothendieck bifibrations [30], and identity types were modelled as bifibrations
P(€) — € x C from a certain “path category”, of which a detailed analysis was given in the
unpublished manuscript. Otherwise, the problem of building the free bifibration on a functor
is also closely related to the problem studied by Dawson, Paré, and Pronk [12, 13] of freely
adjoining right adjoints to a category, which may be seen as a weaker version of building the
free groupoid over a category. Their construction, which generalizes Schanuel and Street’s
definition of the free adjunction [45], takes a category € and embeds it into a 2-category
I15(€) in which every arrow of the original category is equipped with a right adjoint.

The connection between these problems is revealed by taking the free bifibration on the
identity functor ide: as we will see, this defines a category Z(€) := Bif(ide) bifibered over €
that may be equipped with the structure of a double category Z(C) := Z(€) =3 €. We call
Z(C) the zigzag double category of C, since its vertical arrows (corresponding to the objects
of Z(C)) are zigzags of arrows in €. In fact, Z(€) is equivalent to Lamarche’s path category
P(C), and as he observed [29, p.22], any free bifibration may be recovered from this double
category by the formula A, = tgt" sr¢” p, or diagrammatically:

D +—— Bif(p)

pl . i x (0.6)

In turn, taking the underlying vertical 2-category of Z(C€) recovers a 2-category equivalent
to Dawson, Paré, and Pronk’s II5(€), thus reducing the problem of freely adjoining right
adjoints to the problem of understanding the free bifibration on the identity functor.

Our approach to the problem differs from prior work in that we study it from a proof-
theoretic perspective. It is natural to interpret the pushforward f* and pullback g~ operations
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as unary logical connectives, abstractions of existential and universal quantification as well
as of diamond and box modalities. The rules of this primitive “bifibrational logic” may be
presented by a simple sequent calculus, leading us to a description of the free bifibration
wherein the objects of Bif(p) are formulas and its arrows are equivalence classes of sequent
calculus derivations. See Figure 1 for an example derivation in this sequent calculus
parameterized by a specific functor p : D — €, representing an arrow 3: f~ ft X - h ¢g"Y
in Bif(p) such that A,(S) = ida. The close connection with the zigzag double category also
leads to an isomorphic representation of derivations as stacks of double cells in Z(C), as well
as to a string diagram calculus.

It should be emphasized that we do not postulate the Beck-Chevalley condition. Al-
though bifibrations satisfying the BC condition are commonly used in categorical logic after
Lawvere [33] to model extensions of predicate logic with either substitution and existential
quantification or substitution and universal quantification (see, e.g., Jacobs [21]), we are
rather interested in free bifibrations where the BC condition fails. These model more general
situations including ones where the adjoint pair of pushforward and pullback operations
f - f~ themselves represent generalized existential and universal quantifiers 35 := f*,
V¢ := f, and hence by alternating these operations one can in some sense define objects of
arbitrary quantifier complexity.

D X %5 Y
l” ; X 2.y
C A-rLsB 2 i
- A———B
' | | A
AL o
il
o] g
X =Y B ¢
f N fT
Rg f9g
X=—=g4"Y A—— B
fg
e H
ﬁX?g+Y A-",B
ol H 2
fFX=gY
fg A——A4
f_f+X=h>g+Y
RA~
i X=ngvy
ids

Figure 1: Upper left: an example functor, depicting objects and arrows of the category
above over their images below. Lower left: a sequent calculus proof representing
an arrow of Bif(p). Right: the same proof depicted as a stack of double cells in
Z(C) acting on an arrow in D, overlaid with the corresponding string diagram.
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One of our original motivations for studying this problem from this perspective was
the observation, made independently by Mellies and Zeilberger [37, 38, 39] and by Licata,
Shulman, and Riley [34], that substructural and modal logics may be naturally modelled in
certain bifibrations: specifically bifibrations of monoidal closed categories or multicategories
in which the base moreover contains an object with some algebraic structure. As a typical
example, any monoid (A, m,e) in the base of a bifibration of multicategories p : € — B
generates a monoidal closed fiber category € 4, with the tensor product and internal hom
defined by pushing and pulling along the multiplication map m : A, A — A. For more recent
work in this spirit see Nicolas Blanco’s PhD thesis [7] developing the theory of bifibrations of
polycategories as models of classical linear logic, as well as Shulman [47] on LNL doctrines,
which axiomatize a wide variety of categorical structures and type theories. The problem of
constructing free bifibrations may therefore be seen as a natural problem in proof theory
(cf. [47, §8]), and we were motivated to study the “pure” version of the problem for functors
of categories as an eventual stepping stone to the more sophisticated case of monoidal closed
categories or generalized multicategories and polycategories. In the present paper we do
already consider a simple but practically significant generalization of the problem, namely
to free (P,N)-fibrations where one only asks for +-cartesian liftings (resp. —-cartesian
liftings) of the arrows in P (resp. N). In particular when the pair (P, N) form a factorization
system for the base category this defines what Joachim Kock and André Joyal refer to as an
ambifibration.

As it turns out, even very simple functors can generate free bifibrations (and free
ambifibrations) with surprisingly rich combinatorial structure. For instance, let pp : 1 — 2
be the functor from the terminal category to the interval category sending the unique object
of 1 to the initial object of 2:

1 %
p{ f
2 0——1

Now consider the free bifibration generated by p,. It is easy to see that any object of
Bif (p2) must be isomorphic to an alternating sequence of pushes and pulls along the arrow
f starting at the point *, with even-length sequences yielding an object in the fiber over
0, and odd-length sequences an object in the fiber over 1. Let us write n := (f~ f*)"x
and n’ := fT(f~ fT)"x for the objects in the respective fibers (e.g., 3= f~ fT f~ fH f~ fT*).
From the fact that the morphisms in the fibers are generated by the unit and counit of the
push-pull adjunction f* - f~, with a bit of mental exercise (or familiarity with Schanuel
and Street’s paper [45]) one can check that an arrow m — n in Bif(p2)o should correspond
to an order-preserving map {1,...,m} — {1,...,n}. Indeed, Bif(pz)y = A is equivalent
to the (augmented) simplex category of finite ordinals and order-preserving maps, while
Bif(p2)1 = A is equivalent to the category of non-empty finite ordinals and order-and-least-
element-preserving maps. The push-pull adjunction of the free bifibration instantiates to
the free / forgetful adjunction

A 1 Ay

where L freely adds a least element L to turn an order-preserving map m — n into an order-
and-least-element-preserving map m’ — n’, while the right adjoint R interprets m’ as 14+m
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and forgets that a map is L-preserving. This much may be unshocking to readers familiar
with Schanuel and Street’s free adjunction, which can be obtained by freely adjoining adjoints
to the interval category, A = II3(2), as Dawson, Paré, and Pronk already observed [12,
p.139]—although we emphasize the free bifibration is another way of organizing the data.
More strikingly, this example generalizes in the following way. Replace the interval
category 2 by the ordinal w (that is, the total order on the natural numbers) and consider
the free bifibration generated by the functor p, : 1 — w mapping the point to 0, as depicted

below:
1
g
w

What is the fiber of Bif(p,) over 07 Objects are isomorphic to sequences of pushes and
pulls along f;’s, such that, reading a formula from right to left, the running total of pulls
never exceeds the running total of pushes, and the total numbers of pushes and pulls are
equal. In other words, up to isomorphism the objects of Bif(p,,)o may be read as Dyck words.
Via a well-known bijection (see Stanley [49, V2:169-170]), Dyck words are in one-to-one
correspondence with rooted plane trees, and thus Bif(p,,)o may be interpreted as a category
of trees. Under a natural encoding of plane trees as functors T : w°? — A, it turns out that
this fiber category of the free bifibration is equivalent to a full subcategory of [wP, A], and
embeds as a wide subcategory into a category of finite plane trees defined by Joyal [23].

An example of a different nature is obtained by considering the free (Aepi, Amono)-
fibration generated by the inclusion i : N — A of the set of natural numbers (seen as a
discrete category) into the simplex category. This is a free ambifibration, and its universal
property ensures that it is equipped with a canonical morphism into the so-called “fat Delta”
category introduced by Kock [26]. The category Bif (i, Aepi, Amono) appears to have a rich
combinatorial structure that we only begin to analyze here. For example, the lattices of
noncrossing partitions (see Stanley [49, V1:515, V2:226]) are recovered by quotienting this
free ambifibration by the Beck-Chevalley condition.

0 y 1 yo 2,

Outline of the paper. After introducing the sequent calculus in Section 1 and after defining
and analyzing the double category of zigzags in Section 2, the technical core of the paper is
in Section 3, where we establish a series of progressively stronger normal form results, guided
by ideas from proof theory. The strongest of these (Theorem 3.22), which holds under the
assumption that the base category C is factorization preordered (FP), leads to an inductive
definition of the relative homsets of the free bifibration that does not use any kind of quotient
by an equivalence relation, representing arrows by mazimally multifocused derivations. The
FP condition also showed up in Dawson, Paré, and Pronk’s work on the II(€) construction,
where they observed that equality of 2-cells is undecidable in general but is decidable when
C is factorization preordered [13]. As a corollary of our canonicity theorem, we obtain
both an analogous decidability result for equality of arrows in Bif(p) as well as a procedure
for enumerating relative homsets without duplicates. Section 4 briefly describes how our
constructions and results adapt to free (P, N)-fibrations. This is technically straightforward
but has the useful consequence that one can weaken the assumption needed for canonicity,
only requiring that the base category be factorization preordered relative to each class P and
N independently. Finally, in Section 5 we use the tools developed in the paper to analyze
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the three examples described above. Section 6 concludes and suggests some directions for
further exploration.

Remark. This work mixes domains and techniques that will be familiar to different audiences,
and we expect most readers to be unfamiliar with some of them. We tried to find a
presentation that would be accessible to people only familiar but not expert in category
theory, and people unfamiliar with sequent calculus and proof theory. We ask the reader for
forgiveness if they find the exposition too basic in places, for the small doses of redundancy
this introduces, and for the length of the resulting presentation.

1. SEQUENT CALCULUS

In this section we will explain how the free bifibration A, : Bif(p) — € on an arbitrary
functor p : D — € may be constructed proof-theoretically, as an inductively-defined sequent
calculus for a primitive “bifibrational logic”, starting from the data of p. The idea will be to
take the objects of Bif(p) to be formulas of the sequent calculus and its arrows to be proofs
modulo a notion of permutation equivalence to be defined below. This sequent calculus is
cut-free, but the cut rule is admissible, giving a definition of composition of arrows in the
category Bif(p). We will establish a series of properties leading to the main result of this
section (Theorem 1.17), that the sequent calculus indeed gives a presentation of the free
bifibration on p.

1.1. Formulas and unary sequents. To define the formulas of the logic, we find it helpful
to introduce the judgment S = A to mean that S is a formula (= object of Bif(p)) lying
over (or “refining”) the object A of €. We usually refer to formulas simply as “formulas”,
but sometimes for clarity we refer to them as bifibrational formulas, being formulas of
bifibrational logic. Bifibrational formulas are defined inductively by the following rules:

XeD p(X)=A S A f:A—>B g:B—>C TcC
XcA ffSeB g TcB

Here we are using standard notation for inference rules: the judgment below the horizontal
bar is the conclusion of the inference rule, and the judgments above the bar are its premises.
Each rule asserts that if its premises are valid, then its conclusion is valid. We refer to
formulas of the form X as atomic formulas, and formulas of the form f* .S or g~ T as push
formulas and pull formulas respectively. All of the formulas S’ appearing in the inductive
construction of a bifibrational formula S are said to be subformulas of S. We denote the
subformula relation S’ < S, and the strict subformula relation S’ < S.

In set-theoretic terms, each object A of € determines a set Frmy = {S | S = A} of
formulas lying over A, and the collection of sets of formulas (Frmy)ace is the least family of
sets closed under the following three conditions:

e if X €D and p(X) = A then X € Frmy;
e if Se Frmy and f: A — B is an arrow of C then f* S € Frmp;
o if T e Frmg and g : B — (' is an arrow of € then g~ T € Frmp.

Besides the judgment S = A describing well-formedness of formulas, the main judgment
of interest of the calculus is the unary sequent arrow of the form

§=T (1.1)
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where S = A and T = C are formulas lying over objects A and C respectively, and where
h: A — Cis an arrow of C. For comparison, it is worth keeping in mind traditional sequents
of intuitionistic sequent calculus, which take the form

P,....,P,=(Q

(often written with |- in place of an arrow) and which may be read as asserting an entailment
from the conjunction of the formulas on the left-hand side to the formula on the right-hand
side. In the bifibrational calculus, unary sequents of the form (1.1) may be read as asserting
an entailment from S to T' “fibered over h”. We refer to S as the left side, to T as the right
side, and to h as the base of the sequent. The definition of the sequent calculus will ensure
that a proof of the judgment S =} T corresponds to an arrow a : S — T in Bif(p) such
that Ay(a) = h.

1.2. Inference rules and derivations. The calculus includes four logical inference rules:

S=T S’f:S T—T §=—T
fg ! g’ _ g _
_Je - Rft B — — 7 R
Fo—r1" S’=>fff+s f g T—T1 S—g T g
g ! 99’

together with an initial axiom for every arrow of D:
0: X —>YeD p(d) = f
X=Y
f

In general in sequent calculus, one can define a derivation to be a finite rooted tree whose
edges are labelled by sequents, and whose nodes are labelled by valid instances of the
inference rules. Moreover, one can distinguish between open and closed derivations, where
open derivations have premises corresponding to open edges of the tree. Another name for
a closed derivation is a proof. A special property of the bifibrational sequent calculus is
that every inference rule has at most one premise, so that derivations are completely linear
(i.e., they are just lists rather than proper trees), and a derivation is closed just in case it is
terminated by a unique initial axiom.

The overall format of the rules follows the tradition of sequent calculus with left rules
and right rules for every connective, which in this case are the pushforward f* and pullback
g connectives parameterized by arrows f and g of C.

In set-theoretic terms, the rules may be seen as specifying closure conditions that
inductively define a family of sets of proofs of judgments. For example, the Lt rule says
that for any formulas S and 1" and arrows f and g, given a proof of § ==y, T there
should be a proof of f* S =, T. Note that the rules have implicit side-conditions that the
judgments are well-formed. For example, in the Lf" rule, the arrows f and g should be
composable, with f : A — B and g : B — C for some objects A, B, C such that S = A and
TcC.

We refer the reader back to Figure 1 from the Introduction, which gives an example
derivation in the sequent calculus relative to a simple functor.

Finally, we emphasize that the underlying base arrows are more than a mere annotation
on the sequent judgments: they really do restrict the applicability of the inference rules. For
example, applying the Lf" rule to a derivation of a judgment S ==, T' requires factoring
the arrow as a composite h = fg.

]
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We do not include explicit identity and cut rules in the definition of the sequent calculus,

S=U U=T

Sc A d f g ¢
S— g S—T i
idy fg

but these rules are admissible in the proof-theoretic sense as we will explain below. Since
derivations are cut-free, they satisfy a variation of the standard subformula property:

Proposition 1.1 (Subformula property). A derivation of S ==y T involves only sequents
of the form S" — 4 T" where ' < S and T" < T are subformulas of S and T.

We now define closed derivations corresponding to the identity rule below, deferring the
treatment of cut to Section 1.6.

Definition 1.2 (identity). For any formula S = A, there is a proof idg of S =g, S
constructed by induction on S as follows:

XeD p(X) =4 . d . X.indX
Xc A x0T ida

S—g'ds
idg
— R
S:f>f+5 f+
ScA  f:A>B | Fs—=rs-
ScB - dprg o= idp

T:>TidT
ido L
T =T
g—g
:B—>C TeC - -
g -7 B —— idng = QTE}QT
g =

g
Rg~

[

Observe that proofs corresponding to the unit and counit of the canonical family of
adjunctions f* — f~ of a bifibration may be constructed as

7S?Sids 7UT>UidU
1d g R dp L
S— ft8 I ffU=U -
! RS f L
S=— f S ffruo=vu
idg idp

where we make use of the identity derivations from Definition 1.2 to terminate the proofs.
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): X—->YeD p(d) = f

0: X =Y
f
a:S=T a:8 =S
fg I’
f\ga:ftS=T a.f:S’ﬁfJ”S
g /
a:T=T a:S=T
g Ig
?.a:ngﬁT/ af/§:S=f>ng

Figure 2: Term-annotated inference rules of the bifibrational calculus.

1.3. A term syntax for proofs. A term syntax is a compact notation to describe derivations
that can be convenient for defining some operations and equations. We introduce here a
syntax of terms generated by the following grammar:

0 foro: X ->YeD
f\ga

a.f

g.a

ay/g

which are assigned to derivations as shown in Figure 2.

Formally, this defines a new judgment « : S =} T whose derivations are in one-to-one
correspondence with derivations of S =), T'. In other words, for a judgment S =, T, a
derivation of the judgment uniquely determines a term « and a derivation of a: S = T
We will only consider valid terms, that do correspond to a derivation, and will use the term
« and the underlying derivation interchangeably.

We sometimes call multiplications the term-formers a.f and g.a and divisions the
term-formers f\y & and a §/g. The reason why our division notation takes an explicit
subscript f or g is that its meaning depends on a choice of decomposition of the arrow h
underlying « as h = fg; there is no such ambiguity for multiplications.

[0}

Examples. The terms for the identity derivations can be defined recursively as follows:

idX = idX eD idf+s ::f\idB (ldsf) idg—T = (g.idT) idB/g
and the unit and co-unit derivations as follows:
ns = (ids.f)id./ f er := f\ip (f-idv)

These examples use subterms of the form idg.f and f.idg, which we will later show
correspond to cartesian liftings in the free bifibration:

fS:S=f>f+S = idg.f §T:97T?T = g.idp
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1.4. Interpreting formulas and proofs in any bifibration on p. In this section we
suppose given an arbitrary bifibration ¢ : & — € equipped with a functor 8 : D — & such
that ¢ 0 @ = p. As explained in the Introduction, we expect € to factor uniquely via the free
bifibration in the diagram below:

D —" s Bif(p)

0
A

P &
q bifibration

C

We describe now how to interpret formulas and proofs of the sequent calculus as objects and
arrows of €, which will determine the functor [—], once we have completed the definition of
the category Bif(p).

We interpret any formula S as an object [S], of €, and any proof a: S =, T as an
arrow o], : [S]y — [T], such that ¢([a],) = h.

Interpretation of formulas. Defined by induction on the formula:

[XTp = 6(X) £ ST, = 1181, g~ T1y =g [T,

That is, we interpret the pushforward and pullback connectives using pushforward and
pullback in €, and atomic formulas using the action of the functor 6 : D — € on objects.

Interpretation of terms. By gentle abuse of notation, for any arrow a : X — Y € &
such that g(«) = fg, let us write f\g o for the unique 8 : ft+ X — Y such that a = fx £,
and o ¢/ g for the unique 8 : X — g~ Y such that a = 3 gy, both of these derived using
the respective universal properties (0.1) and (0.2) of cartesian liftings. We thus reuse the
notation for division to denote arrows in an arbitrary bifibration. Let us also allow ourselves
to write f for fx and g for gy, when the object can be deduced from the context.

The interpretation of terms is then defined by induction as follows:

[[5]]9 = 9(5)
[ flg =[]y f [f\g aly = f\g [a]y

[g.0]y =7 [a], lecr/gly =l s/ 9

Initial axioms are interpreted using the action of # on arrows of D, multiplications (corre-
sponding to the inference rules Lg~ and Rf") are interpreted by pre- and post-composition
with cartesian liftings in € (we remind the reader that we write composition by juxtaposition
in diagrammatic order), and divisions (Lf* and Rg~) are interpreted using division in &, i.e.,
using the universal properties of the cartesian liftings.

1.5. Permutation equivalence. Let us begin by observing that some algebraic laws
relating multiplication and division hold in any bifibration ¢ : € — B.
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Proposition 1.3. For a : X —» Y € & such that q(a)) = fg, and f: X — Y’ such that
q(B) = fgg', the following equalities hold:

flas/g)=(Fa)pi/g
(f\g @) g = gy (@ g)
(f\gg/ B) g/g/ = f\g (ﬁ fg/g/)
Proof. The uniqueness condition on the arrows obtained by division can be expressed as an

equivalence: f = (af/g) < Bfg=caand f=(f\ga) < f B =a. The proofs for
the desired equalities are then as follows:

f'ay/g)=(f'a) /T (f\g@) g = fl\gg (@ g)
= flay/9)g=1Ff « = f(fya)gd=ad
— (af/9)7=qa = f(f\ga)=a
= ay/g=ay/g = flyga=f\a

(f\gg’ )g/g f\g (/Bj;g/g/)
f(f\gq B g/g—ﬁ ol 9
F((f\ggr )Lglg B
((f\gg )g/g)g=f\
((f\gg B) g/ ') = (f \gg

( )g/?

[

These laws imply that different derivations of the sequent calculus ay, as : S =y, T will
be interpreted by the same arrow [oq], = [a2], : [S]y — [T], in € under the bifibrational
interpretation described in the previous section. In order for derivations to form a bifibration
themselves, we must quotient them by a permutation equivalence relation (~) that relates
any such pair of derivations equated in all interpretations.

Definition 1.4. We define permutation equivalence (~) as the smallest congruence that
contains the four generating equations below. A congruence is an equivalence relation that
is also closed under the derivation term-formers: if a; ~ g, then we also have ay.¢" ~ as.¢’,
and f\g a1 ~ f\g a2, etc., whenever both sides of the equation are valid terms. The
generating equations of (~) are (whenever both sides of the equation are valid):

(f.c).h ~ f.(a.h) for a over g (1.2)

(f\g @).h ~ f\gn (a.h) for o over fg (1.3)
(f.a) tg/ h ~ f(ayg/h) for a over gh (1.4)
(f\gh ) g/ h ~ f\g ( f4/ h) for a over fgh (1.5)
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The generators of the permutation equivalence relation may be defined equivalently (albeit
less compactly) as the following relations on derivations:

S=T S=T szT S?T
g 9 9 9
— L —~ _  RR" — L — _ _ RR"
[ S=T I S=h"T ffS=T f S=n"T
A I Sy VS S |
ffS=n"T fS=n"T ffS=nT ffS=nr
fgh fgh gh gh
S=h>T S:h>T Sf:h>T SﬁT
g g _ 9 9 _
—— L —— RA — L ———— —  RAh
f8=1T a S=—h T ffS=rT a S=—h T
fgh _ g — gh _ fg
fS=—=nT FS—=nT FFS—n T S —n T
9 g 9 9

Observe that each of the relations permutes a left rule with a right rule.

Lemma 1.5. Intepretation in any bifibration respects permutation equivalence: if a1 ~ o,
then [ai1], = [aaly-

Proof. The equivalence and congruence rules are obviously respected by the interpretation.
It suffices to check that the four generating equations are also respected. The equation with
two multiplications holds by associativity of composition:

[(Fa)d], = Fsadr = [Flag)],
The three other equations exactly correspond to the equalities in Proposition 1.3, which
hold in any bifibration. []

Remark 1.6. The first permutation rule (1.2) is really an associativity property for left
and right multiplication: a term outline f.c.h can be read in two ways depending on the
parenthesis placement, the two terms are valid (if « is) and are equivalent.

The second permutation rule (1.3) can be oriented from left to right: if the term (f\g).h
is valid, then one can “push the multiplication inside”, in the sense that the term f\g5 (o.h)
is also valid and is equivalent. But going in the other direction, the validity of a term of
the form f\i (a.h) does not uniquely determine a corresponding term of the form (f\; «).h.
This depends on the solutions [ of the equation k = [h: it may be that no such [ exists,
and there is no valid term of this shape, or that several [ exist giving different possible
rewrites. For example, we saw that for any S = A and f : A — B the identity derivation
idpr g0 f*S =iap f* S isof the form id s ¢ = f\ia p (id S.f), but there are not necessarily
any derivations of the form (f\;id S).f. Indeed, (f\gid S).f ~ ids+ g is an instance of
permutation rule (1.3) just in case g : B — A exists and is inverse to f.

Similarly, the third permutation rule (1.4) can be oriented from right to left: one can
always “push the multiplication inside” by moving from a term of the shape f.(a /h) to an
equivalent term of the shape (f.a) / h, but the other direction is not always possible or is
non-deterministic.

Finally, the fourth permutation rule (1.5) is also an associativity-like property that can
be read in both directions: the two terms of the form f\ « /h are equally valid (not always
valid, but in the same situations) and equivalent. For example, let us assume that a term of
the form (f\ «) /h is valid and is over some morphism g; then the term must be of the form
(f\@)g4/h,so f\ a must be over the morphism gh: our original term is uniquely determined
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to be (f\gn @) ¢/ h, and « must be over fgh. By the same reasoning, any valid term of the
form f\ (o /h) over g must be f\g (« 4/ h), this term is always valid (assuming that the
other term is) and equivalent.

Remark 1.7. This situation, where multiplications can be pushed inside divisions but
not necessarily outside, is reminiscent of Lambek calculus [31], which inspires our notation.
Indeed, the generators of the permutation equivalence relation are analogous to the natural
transformations

(AeB)eC — Ae(BeC) A\(B/C) — (A\B)/C (1.6)

(A\B)eC — A\ (B C) Ae(B/C) — (AeB)/C (1.7)

that exist in any monoidal biclosed category, where the transformations (1.6) are always
invertible, but the transformations (1.7) in general are not. For example, considering the
special case of cartesian closed categories, the former correspond to the natural isomorphisms
(AxB)xC = Ax(BxC)and (B®)4 = (B4, while the latter correspond to the natural
transformations B4 x C — (B x C)4 and A x B¢ — (A x B)® that may be derived in
any ccc, but are very rarely invertible.

1.6. Cut. From a logical perspective, cut is an expected rule for any logic, that ensures that
sequences of reasoning can be chained as expected. The surprising insight behind Gentzen’s
invention of sequent calculus was that the cut rule is in a sense logically redundant. The
original approach for demonstrating this was to include a cut rule directly in the inference
system and then show cut elimination: any closed proof can be rewritten without using the
cut rule. We use the alternative but nearly equivalent approach of first defining a cut-free
system and then showing that the cut rule is admissible. Recall that a reasoning rule is
admissible if, given closed derivations for its premises, there is a closed derivation for its
conclusion.

Definition 1.8. The following cut rule is admissible

a:S=T B:T?U
g
a-f:5=U
gh

via a composition function « - 8 defined up to permutation equivalence (~).

Proof. The cut, or horizontal composition, written « - 3, is defined by induction in the usual

style of cut-elimination arguments: we reason by case analysis on the derivations « and g,

and we may use instances of the cut rule on strictly smaller arguments (more precisely: in

each case both arguments are at least as small and one of them is strictly smaller).
Principal cuts:

0: X—->YeD e: X—->YeD

0: X =¥ ¢V =>7 Se:X >ZeD

d-e: X =7 ) de: X =7
gh = gh
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a:S=T B:T?U
g
oz.f:S?f*T f\hﬁ;ﬁT:h>U a:S?T 53T7U
N S=U f:S=U
of FuB 5 — _ 0 BiS—
a:S=T 8:T=U
9f _ h
ag/f:S=fT fB:fT=U a:S=T B:T=1U
g Jh af h
f-fB:8=U B S=U
o)/ T-T8:5— _ o fiS—
Commutative cuts:
O“S?T a:S=T ﬁ:T=h>U
= g
(fa)-B:f S=U ': fla-B):fS=U
fgh : fgh
O‘:S?T a:S?T B:T=h>U
g
f\ga:ﬁS?T B:TT}U a'ﬂ:SﬁU
(f\ga)-B:frS=U .: fgn (a-B): frS=U
gh . gh
6:T:h>U a:S=T ﬁ:T=h>U
g
a:S=T B'f:TTfﬁU a~B:Sth
g g
0 Bf:S— U _ (@-B)f:S— f U
ghf : ghf
B:TTJ?U a:S=T p:T=U
— g hf
a:S—=—T 5h/f3T:h>U a-f:S=U
g ghf

a-Bp/f:S=fU (a-B)gn/ [:S=fU
gh gh

These rules cover all possible cases for a pair of derivations «, § whose judgments are
composable judgments—the codomain of « is the domain of 5. In particular, notice that
when « starts with a right rule, for example a multiplication o = /. f, 8 must start with
the opposite rule on the same arrow, here a division by f: § = f\; . This is the only
possibility because we know that the two judgments must compose at a type of the form

fTT', and this formula admits only one left (respectively right) rule.
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The definition exhibits some non-determinism on the raw syntax of derivations, as it
may be the case that two commutative cut rules are applicable. We consider it well-defined
as a function up to permutation equivalence (~): whenever several of the cases above would
apply, all derivations that can be defined from the definition are permutation equivalent.

Note that this happens only in the cases where the derivation on the left starts with the
left rule, and the derivation on the right starts with a right rule. There are four such critical
pairs (shapes of derivations that can be composed in two different ways), corresponding to
all four permutations of generators. Two pairs are symmetric to each other, so we only need
to check three.

(f.) - (B.4)
def def
fo(a- (B.1)) ((f.a) - B).i
defl def
f((e- B).1) ~ (f-(a-B)).

def def
fla-(Ba/1) ((F-a)-B) o/ T
defl ldef
?-((0‘ ) gh/g) = (?-(Oz - 5)) fgh/g
(f\g@)-(Br/1)
def def
Fon (- (Bn/1)) (f\g@)-B) gn/i
defl ldef

F\gh (- B) fgn/ %) = (f\ghi (- B)) gn/

[

We will refer to Definition 1.8 as a “cut-elimination procedure”, even if technically speaking
it is a proof of cut-admissibility.

Lemma 1.9. Cut is compatible with permutation equivalence. If aq ~ as then -8 ~ as- 53,
and - a1 ~ - o,

Proof sketch. The proof (detailed in Appendix A.1) proceeds by equational reasoning on
proof terms. The following piece of equational reasoning is representative of the rest of the
proof, and many other proofs in this section:
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(f(e.h))- B

~ [.((ah)-B)
F-((oeh) - (s B)
f;(O‘ ' 6/

~ (f;a) ’ /8/
((f.).h)- (h\i B')
((f.a).h)-pB

Each reasoning step is by definition of cut-elimination. Principal cuts are defined
unambiguously, for example we have (a.h)- 8 = (a.h) - (h\; §') by definition. Commutative
cuts (left rule in the left derivation, or right rule in the right derivation) are only defined up
to permutation equivalence, for example we only have f.(a - 8') ~ (f.a) - 3. ]

Lemma 1.10 (identity is neutral). The identity derivations are neutral elements for cut:
idg:aa ~ a ~ «-idg

Proof. See Appendix A.1. []

Lemma 1.11 (n-expansion).
For any a: ft S =, T, forany f: S = g T, we have:

a~ fig(fs-a) B~(B-9r) /9
Proof. See Appendix A.1. []

Lemma 1.12. Cut is associative: (- ) -y ~a-(B-7).
Proof. See Appendix A.1l. ]

1.7. The free bifibration. We can now formally define Bif(p) as a category where:

e The objects are the valid formulas S = A, (Section 1.1).

e The arrows between S = A and T' = B are the valid (closed) derivations of the judgment
S =T for any f: A — B e C (Section 1.2), quotiented by the permutation equivalence
relation (~) (Section 1.5).

e The identity arrow for S = A is (the equivalence class of) the derivation idg (Defn. 1.2).

e The composition of a: § =4 T and 3 : T =, U is the cut - 3 : § =>4, U (Defn. 1.8).

Lemma 1.13. Bif(p) is a category.

Proof. We proved that composition is well-defined on derivations quotiented by permutation
equivalence (Lemma 1.9), and that identity and cut satisfy neutrality (Lemma 1.10) and
associativity (Lemma 1.12). ]

Next we show that Bif(p) is the domain of a bifibration A, : Bif(p) — € equipped with
a functor 7, : D — Bif(p) such that A, on, = p. We define A, by
(1) Apy(S=A4):=A
(2) Ap(a: S = T):=f

Lemma 1.14. A, : Bif(p) — C is a bifibration.
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Proof. For any arrow f: A — B in C and formula S = A, the pushforward of S along f is
precisely the formula f*S — B, and we have previously defined the arrow fg:S — f© S as
(the equivalence class of) idg.f. Let us show universality, i.e., that fg is +-cartesian.

Forany g: B— C and a: S =, T, we can take 3 := f\ga: ff S =, T. We have
to show a ~ fg - 5:
fs-B
(ids.f) - (f \g @)
= idg -«
~

as well as unicity: if a ~ fg -3 then

/8/
~ f\g (fs-B) by n-expansion (Lemma 1.11)
~ f\ga
= p
The case for gy : g~ T — T is symmetrical. L]

We define the functor 7, : D — Bif(p) by interpreting every object X of D as an atomic
formula and every arrow 0 : X — Y as an initial axiom, and it is immediate that A, on, = p.
Lastly, we need to show that A, : Bif(p) — € is universal in the sense explained before,
that for any bifibration ¢ : € — € equipped with a functor 6 : D — & such that go 0 = p,
there exists a unique morphism of bifibrations [—], : A, — ¢ making the diagram below

commute:
D—" 5 Bif(p)

[=1o
0
A

P &
q bifibration

C

We already defined the interpretation [—], of formulas and proof terms in Section 1.4, and
showed that it respects permutation equivalence (Lemma 1.5). We now establish that it is a
functor [—], : Bif(p) — €, and that it is is the unique morphism of bifibrations making the
diagram above commute.

Lemma 1.15. [_], : Bif(p) — € is a functor.

Proof. We prove the interpretation respects identities [idg], = idfs), by induction on S:
[[idX]]g =0(idy) = idg(X) = id[[X]]g

[ids 5]
= [f\iap (ds.f)],
— s ([idsly fis1,)
= f\idg id[[s]]e f[[5]19> by induction on §
fidg 131,

idﬂsﬂe property of cartesian liftings
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(The case of the identity on g~ T' is symmetrical.)
We prove that the interpretation respects composition [a - 8], = [o], [5]y by simulta-
neous induction on the derivations a and 3. Representative cases follow:

[ fTg [f\n Blg

[eds fis1, (f\n [8p)

[6- 6]]9 =[¢ 6]]9 =0(d¢) = [[5]]9 [[6]]9 = %aﬂeﬂ%ﬁﬂo by (0.1)
— @) (P Bl

[[a(ﬁh/f)]]g

o~ (B.f)] e Onld)

o O et

_ Pl — ([l [41) /T

_ [[a]]é’ 5 jef]] U1, = [aly ([Blgn/ f) by Proposition 1.3
P — [aly [84/7],

[]
Lemma 1.16. [—], : A, — q is the unique morphism of bifibrations such that [—],on, = 0.
Proof. Recall that the interpretation was defined as follows on terms:
[6] = 6(5)
[ flg = [eds f [F\g aly = f\g laly
[9.0dp =g [y la s/ glg =l s/ 9

The equation [—], o7, = 6 holds immediately by construction.

To be a morphism of bifibrations, the interpretation must send cartesian arrows to
cartesian arrows of the same type. This follows from the definition and the previous lemma.
For +-cartesian arrows for example, we have:

[fs]y = [ids -fly = lids]y fisy, = idgsy, fis1, = fis1,

Finally, for unicity we remark that each of the five equations defining the interpretation [—],
must hold for any morphism of bifibrations 7 : A, — ¢ such that 7o, = 6, so necessarily

7= [, O
Putting it all together, we conclude with the main theorem of this section.

Theorem 1.17. A, : Bif(p) — € is the free bifibration on p : D — C.

An immediate consequence—applying one of the equivalent characterizations of adjunctions
[35, Theorem IV.1.2(ii), p.83]—is that we can construct a functor

A : Cat/€ — BifCat(C)
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from the slice of the category of categories over C into the category of cloven bifibrations
over €, which is left adjoint to the evident forgetful functor:

A

/\
Cat/C 1 BifCat(C) (1.8)

f\_/

U

This induces a monad on Cat/C whose algebras are the cloven bifibrations over C.

1.8. Some proof-theoretic consequences. Initiality of the Bif(p) construction has as
another direct consequence that the sequent calculus can be used to reason about both
existence and equality of morphisms in arbitrary bifibrations. We state this as a corollary of
Theorem 1.17.

Corollary 1.18. Suppose given a functor p: D — €, an arrow f: A — B of C, and a pair
of bifibrational formulas S = A and T = B. Then:

(1) the sequent S = T is derivable iff for every bifibration q : € — € and functor : D — &
such that q 0 @ = p, there is a morphism o : [S]y, — [T], in € such that q(a) = f ;

(2) two derivations oy, : S == T are permutation equivalent a1 ~ oo iff for every
bifibration q : € — € and functor 0 : D — & such that q o 8 = p, they have the same
interpretation [oq], = [aa]ly as morphisms in €.

As recalled in the Introduction, any bifibration & — € determines and is determined
by the data of a pseudofunctor € — Adj into the category of categories and adjunctions.
This pseudofunctor sends every object A of € to its fiber category €4 consisting of the
arrows lying over id4, and every arrow f : A — B of € to the push/pull adjunction
fr:84 — & - f : & — &4 between fiber categories. In sequent calculus terms, the
action of the push/pull functors on arrows is described by the following open derivations:

Sl == SQ Ty =15
1dA Rf+ idB Lg_
S1:>f+52 g Ty =1,
f Lfr g Ry
s P fr Sy g T w9 T (1.9)

The fact that the fiber functor € — Adj associated to a bifibration & — € is only a pseudo-
functor in general means that the identities (go f)* =g o ff and (go f)” = f~ og™ hold
only up to natural isomorphism, as do the identities id4™ = idg,, =ida~. To describe this
in the sequent calculus, let us first define logical equivalence of formulas (corresponding to
what is often called “vertical isomorphism” in the categorical literature on fibrations).

Definition 1.19. Let S1,S2 = A be two bifibrational formulas over the same object A. We
say that S7 and S are logically equivalent, written S; =4 So or simply S; = Sy, if there
are a pair of derivations « : S; ==iq, S2 and 3 : Sy =iq, 51 such that o- 8 ~ idg, and
,3 BN idsz.

Proposition 1.20. Two formulas S1,S2 = A are logically equivalent S1 =4 So iff they are
isomorphic in the fiber category Bif(p)4.
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Logical equivalence should be distinguished from the weaker notion of isomorphism S = T
given by isomorphism in the total category Bif(p), i.e., a pair of derivations o : S = T’
and §: T =4 S such that a- 8 ~ idg and - a ~ idy (where one does not require f and g
to be identity arrows or that S = A and T' = B lie over the same object).

Proposition 1.21 (Pseudofunctoriality). The following logical equivalences hold

(gof)"S=g"fs (1.10)
(foy T=fgT (1.11)
dtU=U=id" U (1.12)

for all f,9,5,T,U of the appropriate type.

Proof. By Proposition 1.20, this is a corollary of Lemma 1.14, since these isomorphisms
hold in the fiber categories of any bifibration. Working out the derivation explicitly, the
equivalence (1.10), for instance, is witnessed by the following derivations (parameterized by
Sc A, f: A— B,and g: B — (), whose compositions are permutation equivalent to the
identity derivations on (go f)" S and ¢g* f+ S:

S= 5 S=9
id 4 ida
S—= s S=(gof)"S
f fg
Sf=>g+f5 f‘“S:(gof)—’_S
g g
(QOf)+S?C>g+f+S g+f+5§(90f)+5

More generally, by Theorem 1.17 we have

Corollary 1.22. Given a functor p : D — C, two bifibrational formulas S1,52 = A are
logically equivalent Sy = Sy iff their interpretations are isomorphic [Si]y = [S2]y in every
fiber category Ea for every bifibration q : € — € and functor 6 : D — & such that go 6 = p.

Finally, let us observe that the free bifibration construction is conservative.
Proposition 1.23 (Conservativity). The functor n, : D — Bif(p) is full and faithful.

Conservativity is obvious by inspection of the sequent calculus, since the only way to prove
an atomic sequent X = Y is by providing an arrow § : X — Y in D such that p(0) = f.
Faithfulness of 7, is also a corollary of the following stronger statement, whose proof only
uses the universal property of the free bifibration, and which will serve us in the next section.

Proposition 1.24. The functorn, : D — Bif(p) is equipped with a left inverse x, : Bif (p) —
D, such that the pairing (xp, Ap) : Bif(p) — D x € is a morphism of bifibrations from A, to
the trivial bifibration w9 : D x € — C.
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Proof. Projection functors me : D x € — € are always bifibrations, with cartesian liftings
defined by

(X, 4) “0) (x By = (X, A) £ (X,0) = (X, B) "9 (x 0

A ! B B g C
By the universal property of the free bifibration, we therefore obtain a unique morphism of
bifibrations [—], : Ay — m

D —" s Bif(p)

Ap Dxe
/
¢
where 6 := (idp,p). This proves the proposition, taking x, := m o [—], and using the
universal property of the product of categories. L]

In terms of our concrete description of the free bifibration, x, : Bif(p) — D is the functor
sending a bifibrational formula to its atomic source and sending an equivalence class of
derivations to the necessarily unique initial axiom with which all of the derivations begin.

1.9. Related work. There is a well-known construction, originally due to Gray [16], of the
free fibration on a functor (or dually the free opfibration) as a comma category. The standard
construction actually defines a split (op)fibration, in the sense that the pseudofunctoriality
laws (1.10)—(1.12) collapse to strict equalities, although one can represent non-split fibrations
and opfibrations as pseudo-algebras for the corresponding pseudomonads (see the account
by Anders Kock [25], as well as recent work of Emmenegger, Mesiti, Rosolini, and Streicher
on an alternative construction of fibrations [15]). Conversely, our construction produces a
non-split bifibration, but one can recover something close to a split bifibration by restricting
to strictly alternating formulas (see Section 3.3 below, and in particular Remark 3.4). It is
worth mentioning that since a functor is a bifibration just in case it is both a fibration and an
opfibration, the free bifibration monad is formally the coproduct of the free fibration and the
free opfibration monads—but this characterization does not give much help in constructing
it explicitly.

We will discuss Lamarche’s construction of the free bifibration on a functor along with
Dawson, Paré, and Pronk’s closely related II3(C) construction, both already referenced in
the Introduction, further in Section 2.

The notation S = A to denote an object S € Bif(p) such that A,(S) = A is taken from
Mellies and Zeilberger’s work on functors as type refinement systems [37], and more broadly
our proof-theoretic construction is inspired in part from their suggestive type-theoretic
reading of bifibrations [38, 39], as well as from the bifibrational calculus of Licata, Shulman,
and Riley [34]. This approach of course owes much to the tradition of categorical proof
theory as pioneered by Lambek [32].
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2. THE DOUBLE CATEGORY OF ZIGZAGS

As mentioned in the Introduction, Lamarche [29, 30] defined a path category P(C) for each
category €, showed that it admits the structure of a double category, and explained how
to use this structure to construct the free bifibration on a functor. In this section we will
start the other way around, defining a category Z(C) equivalent to Lamarche’s path category
as the free bifibration on the identity functor, and showing that it admits a strict double
category structure. The objects and tight morphisms of Z(€) are the objects and arrows
in €, while the loose morphisms are zigzags (or paths) of arrows in €, and thus Z(C) is called
the zigzag double category. Its underlying 2-category of loose morphisms is equivalent to
I15(@), the 2-category studied by Dawson, Paré, and Pronk [12] that is obtained by freely
adjoining right adjoints to €. To prove this equivalence, we establish that Z(€C) has another
characterization as the free fibrant double category on C.

Whereas Lamarche and Dawson, Paré, and Pronk gave rather intricate combinatorial
descriptions of what it means to be a morphism of zigzags (i.e., to be a double cell in Z(C),
or a 2-cell in II5(€)), we will extract a simple presentation of Z(C) by translating the sequent
calculus definition to double categorical syntax. In turn we will see how that presentation
can be translated backwards to obtain a topologically meaningful string diagrammatic
representation of proofs in the bifibrational calculus.

2.1. Deriving a double category structure from a right action. For the rest of the
paper we define Z(€) := Bif(ide) to be the total category of the free bifibration on the
identity functor for €. Observe that by Proposition 1.24, Z(C€) is automatically equipped
with the structure of a reflexive graph object in Cat

Z(€)

4\
srcl U |tgt
I

C

taking src := xp, U := 1), and tgt := A, for p = ide. We use the letter Z to range over the
objects of Z(€), which we refer to as zigzag formulas or simply zigzags, and write Z : A ~ B
to indicate that src(Z) = A and tgt(Z) = B. We use the letter ¢ to range over arrows
Z — Z' of Z(€). Such an arrow may be depicted as a cell

A%B

zé ¢ éz’

CT>D

where f = src(¢) and g = tgt(¢). We always depict the tight morphisms (corresponding to
the underlying arrows of €) horizontally and the loose morphisms (corresponding to objects
of Z(C), i.e., zigzags of arrows in C) vertically. We will develop this diagrammatic picture
further in Section 2.2, but for now we work with the purely formal definition building on
the results of Section 1.

To extend this reflexive graph structure on Z(C€) to a double category (i.e., to an internal
category in Cat), we need to exhibit a vertical composition functor

© 1 Z(C) gt Xsre 2(C) — Z(€)
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and prove that it is associative and neutral relative to U. We will recover vertical composition
® as the special case p = ide of a more general action

®p : Bif(p) A, Xsre 2(€) — Bif(p)

of Z(€) on any free bifibration Bif(p).

To define this action, let us begin by observing that the sequent calculus for Z(€) shares
the same logical inference rules as any free bifibration Bif(p) over the same base category:
their sequent calculi only differ in the choice of atomic formulas and initial axioms. Moreover,
both atomic formulas and initial axioms of Z(€) carry no information, since they are uniquely
determined by the underlying object/arrow of the base category. These observations make
clear that we can define the action of Z(C) on Bif(p) as follows:

o at the level of formulas, given a formula S = A and a zigzag Z : A ~» B, the formula
S ® Z = B is obtained by substituting S for the unique atom A in Z;

e at the level of proofs (i.e., representatives of arrows), given a € Bif (p) such that A,(a) = f
and ¢ € Z(€) such that src(¢) = f and tgt({) = g, the proof a ®, ¢ € Bif(p) such that
Ap(a®, ¢) = g is obtained by substituting o for the unique initial axiom f in .

As a visual aid, let us write “[]” for the uniquely determined atoms and axioms in a zigzag
formula/proof. Formally, the action can then be expressed inductively as follows:

S@&0O=5 S@® (ff2)=f"(S®, 2) S@® (g Z)=g (S® 2)
a®l=a a®p (C.f) = (a® ().f a® (f\g¢) =f\g(@a® ()
a®p (9.¢) =7.(a® () a®p(Cr/9)=(a® ) /7

Proposition 2.1. The action extends to a functor ®, : Bif(p) o, Xsre 2(€) — Bif(p).

Proof. Since ®, is defined as a substitution operator, it is immediate that it respects
permutation equivalence of proofs in the sense that we can define [a] ®, [(] := [a ®, (]
without ambiguity. To show that it is functorial, we need to verify the permutation
equivalence

()@ (¢ ) ~ (@@ Q) - (o @ () (2.1)

for all o, o’ € Bif(p) and ¢, (' € Z(€) for which these operations are defined. This follows
from the definition of cut (Definition 1.8) by a straightforward induction on ¢ and ¢’. [

We can now define the vertical composition functor © : Z(C€) gt X sre Z(€) — Z(€) as the
action of Z(€) on itself, ® := ®q,, and use that to define the double category of zigzags.

Proposition 2.2. Vertical composition © is strictly associative and neutral relative to U.
Proof. Immediate from the definition of ®), as a substitution operator. []

Definition 2.3. The zigzag double category of C, notated Z(C), is defined as a strict
double category by the data Z(C) := (C, Z(€), src, tgt, U, ®), where

Z(C) := Bif(p) src:=xp, tgt:=A, U:=1n O=®,

as explained above, for p = ide.
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Notice that with this definition, equation (2.1) specializes to the interchange axiom for the
double category Z(C). We already saw in Section 1.5 that the permutation equivalence
relations were necessary for obtaining a bifibration, but it is worth mentioning that this
axiom also forces the definition of permutation equivalence. For example, the permutation
relation (1.3) may be rederived as follows:

(F\ga)h = (@@ (f\ f9)) - (idr -h @ h) defi. of ®
~ (o (idr h)) ® ((f\g fg) - ) by (2.1)
~ (a.h) ® (f \gn fgh) properties of cut and id
= f\gn (a.h) defn. of ®

Similar observations were made by Dawson, Paré, and Pronk [12, §1.5] and by Lamarche [29,
p.12].

2.2. From inference rules to double cells. Having established that the free bifibration
on the identity functor ide : € — € generates a double category of zigzags in €, at this point
let us develop a more diagrammatic presentation of Z(€) that is isomorphic to Definition 2.3
but will help us to better visualize it as a double category.

An easy but important observation is that what we have called “zigzag formulas” (that
is, objects of the free bifibration Z(C) := Bif(ide)) really are in one-to-one correspondence
with zigzags of arrows in the category €. Of course we have not defined what a “zigzag of
arrows” is formally, but one possible definition is, say, as a graph homomorphism Z : L. — €
from some orientation L of the line graph L, with n edges and n + 1 vertices into the
underlying graph of €, for some n > 0. It is clear that such a graph homomorphism can be
represented as a zigzag formula with n total pushes and pulls, and vice versa. For example,
if € is the category on the left and Z is the (preformally defined!) zigzag on the right,

C

then Z can be encoded isomorphically either as a graph homomorphism Z : L — € where

T €1 €2 €3 €4
L= Vo > U1 > Vo < V3 > V4

Z(’Uo):A Z(U1>:Z(U3>:B Z(’l}g):D Z(U4):C

Z(er) =f Z(ea) =h Z(es) =g Zlea) =g

or by the zigzag formula Z = ¢g" h~ k" ft A. One important point is that both of these
representations allow us to represent the empty zigzag, which corresponds to a choice of
object in €, and should not be confused with a one-step zigzag along an identity arrow.
Now turning to double cells, observe that each logical inference rule of the sequent
calculus, recalled below for reference, may be interpreted as a generating double cell of Z(C)
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(to make the notation lighter, we omit arrows from cell names):

S—T §=>5 T—=T —
fig + — = Rft giLf figR,
f+S:>TLf S'=/>f+S / QiT:fT/ g S=g T 9

g 'f 99 f

$ $

¢ ) (2.2)
A1 ALy c -2 LNy
At | r | e | &
B —— C A —— B B —— (' A—— B

9 I'f g9’ !

Formally, since we defined Z(C€) as an internal category, each of these cells corresponds to an
arrow in Z(C€) with given source and target arrows in C. For example, the cell we have named
Lt corresponds to an arrow v : fT A — C with src(y) = fg and tgt(y) = g. These four cells
(really, a family of cells parameterized by the arrows f, g, f’, ¢’) generate the double category
Z(C) in the sense that every representative ¢ of an arrow Z(€) may be uniquely decomposed
as a vertical composition of generators ( = v1 ® - ® . Indeed, it is immediate from the
inductive definition of the sequent calculus that any proof in any free bifibration over € may
be uniquely decomposed as the action of a list of generators on an initial axiom.

Proposition 2.4. For any derivation o : S == T there exists a unique series of generators
Yis---sYn € Z(C) of the form (2.2) such that & = 6 ®p y1 ®p - - - ®p Y, where 6 = xp(a).

It is possible to go in the other direction and extract a direct presentation of Z(C), considering
its double cells as formal vertical compositions of generators—we will refer to such lists
of generators as “stacks”—modulo an equivalence relation. Our definition of permutation
equivalence for the sequent calculus (Definition 1.4) translates directly to the following
relations on stacks:

T O N O A B L
C—fg —gh— - S —9— ~ L~ fghs
1 R T (N I

foh foh e e

(2.3)

L9 L9 . _foh fah
I A I
c—fghs - —g— - —gh— ~ L — g
I B I I
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Our inductive definition of the identity derivation idg : S ==iq, S for every bifibrational
formula S = A (Definition 1.2) likewise translates to the following definition of identity
double cells for every one-step zigzag, which can be vertically stacked to define the identity
cell for an arbitrary length zigzag Z : A ~~ B:

A——A B——2RB
| Rl |
A—f—= B A—9— B (2.4)
1w R
B——BHB A ——

We elide the explicit definition of horizontal composition for Z(€) in terms of stacks, but
suffice it to say that our cut-elimination procedure (Definition 1.8) can be repeated. We
should mention that horizontal composition « - 8 is an operation taking two stacks with
matching zigzags along their boundaries tgt(a) = src(8), where the left and right boundaries
of a stack can be computed by concatenating all of the one-step zigzags (i.e., up or down
arrows) that appear on that side of the generators, ignoring empty zigzags.

Now, a corollary of Proposition 2.4 is that any free bifibration may be easily reconstructed
from the double category of zigzags, as observed by Lamarche [29, p.22].

Corollary 2.5. Bif(p) = D ,xgc Z(C) and A, = tgt™ src” p, or diagrammatically:

D «—— Bif(p)

C —— Z2(€) — e
This suggests an isomorphic representation of sequent calculus proofs, as a stack of generators
in Z(C) paired with a single compatible arrow of D. We refer the reader again back to the
Introduction for an example of this representation on the right side of Figure 1 (we will
explain the overlaid string diagram further below).

2.3. Aside: displayed bifibrations. To better understand the relationship between the
zigzag double category and the bifibrational sequent calculus, we find it revealing to pursue
a more conceptual analysis of the action defined in Section 2.1. This analysis will not be
needed in the rest of the paper and so may be safely skipped, but could interest readers
familiar with Bénabou’s work [5, §7] and so-called displayed categories [1].

Recall that we wrote Frmy for the set of bifibrational formulas (that is, objects of
Bif(p)) lying over an object A € €. Let us similarly write

Pf;, := {a:S=h>T|SeFrmA,TeFrmc}/~
for the set of equivalence classes of proofs (that is, arrows of Bif(p)) lying over an arrow
h: A — C. This set is equipped with evident projection functions Frm4 «— Pf;, — Frm¢

returning the domain and codomain of a proof. The action &, : Bif(p) a, Xsrc Z(C) — Bif(p)
now permits the definition of a double functor

oA, : Z(C)T —— Span(8Set)
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from the transpose of the zigzag double category into the double category of spans of sets,
by the following mappings:

A — Frmy
f:A—> B Frm, < Pf; — Pfp
Z:A~B — —®Z:Frmy — Frmp

l

A f . B Frm 4 < Pty Frmp
Z?/ ¢ éz’ — f®Zi -@&¢ i—@Z’
C — D Frmg Pf, > Frmp

Note the transpose is necessary because the tight morphisms of Z(C) are sent to loose
morphisms of Span(Set).
In particular, 0A, maps each generator of Z(C) to a double cell of spans:

Frmy «— Pf;; — Frme Frmy <— Pfp —— Frmy
el e ] I b
Frmp +— Pf, — Frmc Frmy <— Pfyy — Frmp
Frmg «— Pfy — Frmer Frmy <— Pf;; — Frme @5)
o |kl
Frmp «— Pf,y — Frmer Frmy <— Pf; — Frmp

One might think of this interpretation as internalizing the idea of an inference rule as a
transformation from derivations of the premises into a derivation of the conclusion. Notice
that this double functor dA,, : Z(€)" — Span(Set)

e strictly preserves composition of zigzags: since ®, is a strict action, with the equation
r® (a®b) = (r®a) ®b corresponding to simple chaining of logical connectives and
inference rules;

e lazly preserves composition of arrows in C: since the span morphisms Pf; - Pf, — Pf;,,
which correspond to cut-elimination, are typically not invertible.

In fact, this construction is very general and can be applied to any bifibration ¢ : € — € to
derive a lax double functor dq : Z(€)" — Span(Set). On the horizontal category H(Z(€)) =
C, this functor sends every object A € € to the set Oby = {S € € | ¢(S) = A} of objects
lying over it, and similarly every arrow f : A — B to the set Arry = {ae €| g(a) = f} of
arrows lying over it, which is equipped with evident projections Oby « Arry — Obp. This
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extends to the generators of Z(€) by interpreting the span morphisms

Oby <— Arry, — Obg Obyr <— Arryr — Oby
S ) N I
Obp +— Arr, — Ob¢ Oby <— Arryy — Obp
Ob¢ «— Arry — Obg Ob, <— Arrj, — Obg (26)
T e N
Obp <— Arryy — Obc Oby — Arry — Obgp

using the bifibrational structure of ¢, very similarly to how we defined the interpretation
functor [—], : A, — € from the free bifibration in Section 1.4. For example, the function
ft : Oby — Obpg maps any object S € & lying over A to (the object component of)
its pushforward f*S, the span morphism L* : Arry, — Arrg is interpreted using the
universal property of this pushforward, and R" : Arrpr — Arrpy by postcomposition with
the associated +-cartesian arrow S — f*S.

Conversely, any such lax double functor F' : Z(C)" — Span(8et) determines a category
Se F' together with a functor me : SGF — C equipped with the structure of a bifibration.
Indeed, the category Se F' is constructed in the usual way as a displayed category: objects
of {o F are given by pairs (A, S) of an object A € € and an element S € F(A), arrows are
given by pairs (f, «) of an arrow f € € and an element o € F/(f) (meaning an element of the
apex of the span F'(A) — F(f) — F(B)), and composition and identity arrows are defined
using the lax structure of F.

In turn, the tight component of the lax double functor F : Z(€)"T — Span(8et) enables
us to go further and equip the projection functor me : SGF — € with the structure of a
bifibration. For example, the pushforward along an arrow f : A — B is defined using
the functions F(ft A) : F(A) — F(B) to compute pushforward objects, and applying
F(R") : F(id4) — F(f) to an identity arrow to compute the associated cartesian arrow.
The universal property of this pushforward is derived from the interpretation of F(L*) and
the defining equations of Z(C).

The constructions ¢ and { witness an equivalence

D
lbiﬁbration = 7(€)T —; Span(Set)
e

and one might therefore reasonably refer to a lax double functor F' : Z(@)T — Span(8et) as
a “displayed bifibration”.

We will not pursue these reflections further in this paper, although we think they could
eventually be helpful for developing a more algebraic perspective on the sequent calculus.

2.4. A dagger structure on zigzags. One advantage of considering free bifibrations
in terms of the double category of zigzags is that the latter clearly has a large degree of
symmetry. Of particular relevance is a dagger-type involution

()" z(e) - z(e)’
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that reverses the direction of vertical arrows and double cells. Formally, this corresponds to
an endofunctor on Z(C€) swapping source and target while leaving the underlying arrows in
C invariant:
()7
T
ze)  ~ 2(€)

Sl

src tgt
¢

At the level of formulas, (—)' turns pushforwards into pullbacks and vice versa while reversing
the sequence of connectives applied (e.g., (" g~ f* )1 = f~ ¢ k™ [J). More geometrically,
the transformation may be visualized as reflecting the generating cells (2.2) across the
x-axis (or equivalently reading them from bottom to top), which swaps Lf* with Lf~ and
Rgt with Rg™. The (—) transformation extends to arbitrary stacks of double cells by
1O Oy = Wo-e fy;r. The following is immediate.

Proposition 2.6. (—)' is an involutive isomorphism.

As a corollary, we can derive that the pairing of the source and target functors is a bifibration.

Theorem 2.7 (Lamarche [30, Theorem 3]). (src,tgt) : Z(€) — € x € is a bifibration.

Proof. By Proposition 2.6, src : Z(€C) — € is a bifibration since it inherits a bifibrational
structure from tgt via the (=)' involution. As we saw earlier by Proposition 1.24, the pairing
(src,tgt) : Z(€) — € x € is a morphism of bifibrations from tgt to w2, which means that
tgt-cartesian arrows in Z(C) are mapped by src to identity arrows in €. Symmetrically,
applying the (=)' involution, it is also a morphism of bifibrations from src to ;. This
ensures that the pairing is a bifibration (src, tgt) : Z(€) — € x C, since the two bifibrational
structures act independently. []

2.5. Recovering the free adjoint construction. Given a double category E seen as
an internal category E = (C, &, srce, tgte, Us,®¢), we write H(E) = € for its underlying
horizontal category. Any double category E also induces a vertical 2-category denoted V(E),
with same set of objects, 1-cells given by vertical arrows F' : A —e— B , and 2-cells
«a : F'= G given by globular double cells

A=——=A
oo e
B ——

that is, cells whose source and target are identities.

A double category E is said to be fibrant (or to be a framed bicategory [46]) just in
case the pairing of its source and target functors (srce,tgte) : € — € x € is a fibration, or
equivalently an opfibration, and therefore a bifibration [46, Theorem 4.1]. This is equivalent
to asking that the double category has all companions and conjoints meaning that for every
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horizontal arrow f : A — B there is both a vertical arrow Fy: A —e— B and a vertical

arrow Gy : B —e— A equipped with a pair of cells

A=—=A B ——=1B
| g on s |
AP A

satisfying a few equations (see [14] and [46, Theorem A.2]; note that the conventions for the
roles of horizontal and vertical arrows are often swapped in the literature).

Fibrant double categories are moreover essentially equivalent to proarrow equipments
[46, Appendix C]. In particular, any fibrant double category E canonically determines an
identity-on-objects pseudofunctor (—)" : € — X from its underlying horizontal category
C = H(E) to its vertical 2-category X = V(E) that sends every horizontal arrow f to its
vertical companion Fy, which has a right adjoint Fy 4 G given by the vertical conjoint.
Conversely, given a 2-category K equipped with a pseudofunctor I : € — X such that every
arrow f € € is mapped to an arrow I f € X with a right adjoint, one can define an associated
double category Eq whose objects and horizontal arrows are the objects and arrows of C,
whose vertical arrows M : A — B are l-cells M : A — IB in X, and whose double cells

AL .¢c

W oa

BT>D

are 2-cells aw: M - Ig = If - N in K. Then Eg is a fibrant double category [46, Prop. C.3].

The correspondence between fibrant double categories and proarrow equipments means
that we can recover Dawson, Paré, and Pronk’s free adjoint construction II3(C) up to
equivalence as the vertical 2-category of Z(C).

Theorem 2.8. Z(C) is the free fibrant double category over C.

Proof. By Theorem 2.7, Z(C€) is a fibrant double category. Moreover, given any other fibrant
double category E = (C, &, srce, tgte, Ug) with underlying horizontal category H(E) = €,
there exists a unique double functor Z(€) — E whose underlying functor Z(€) — € is a
morphism of bifibrations from (src, tgt) to (srce, tgte ). Indeed, any double functor Z(€C) — E
is determined by the image of the generators (2.2), and the image of the generators is
uniquely determined by the bifibrational structure of srcg : € — € and tgte : € — C. []

Corollary 2.9. V(Z(C)) ~ II5(C).

In particular, there is an identity-on-objects pseudofunctor (=) : € — V(Z(€)) mapping
every arrow f : A — B of € to the forward zigzag f* A : A ~ B, which has a right adjoint
given by the backward zigzag f~ B : B ~ A. Observe that (—)" is only a pseudofunctor
rather than a strict functor because, as we already observed, the free bifibration is not
split in the sense that the canonical identities (go f)"S = ¢g* f¥ S and id" U = U only
hold as isomorphisms in the fiber categories rather than as strict equalities. In contrast,
Dawson, Paré, and Pronk constructed II3(€) in a way that admits a strict embedding functor
(=) : @ — TI3(€). Nevertheless, the universal properties of these two constructions implies
an equivalence of 2-categories V(Z(C)) ~ I12(C).
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2.6. From double cells to string diagrams. Another reward of the double categorical
analysis is that it leads to a natural graphical calculus, derived by applying standard
conventions of string diagrams to the generators of Z(C). The idea is simple: we begin
by dualizing the generators (2.2) geometrically, so that cells become vertices and objects
become regions, while arrows become edges separating the regions which meet at a vertex:

fy f! g fy
A A C C
f C A’ [ g c’ A e
B B B B
s 99

g f
Then we remove the vertices, depicting the cells by simply bending edges appropriately:
[y f g [y
} \¢
f BA C AL A f 9 CAC A B g
B A
9 It 99 f

The permutation equivalences (1.2)-(1.5) corresponding to the stack relations (2.3) now have
natural interpretations as planar isotopies. For example, (1.2) and (1.3) (which permute R"
with L™ and LT respectively) may be depicted as follows:

4 4

The equations defining cut-elimination (Definition 1.8) also have natural topological inter-
pretations. Below we illustrate one principal cut case and one commutative cut case:

ISV AN

We recover in this way the calculus of planar arc diagrams that was used by Dawson, Paré,
and Pronk [12, §6] to represent 2-cells in II(€) for the special case that € is a free category.
More generally, when € is not free we also need to include vertices representing equations
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in the base category. For example, an equation h = fg that is applied implicitly within a
sequent proof, as depicted on the left side of Figure 1, may be represented by a trivalent
vertex in the corresponding string diagrammic proof, as depicted on the right side of that
figure. As also depicted there, we also need to include terminating vertices corresponding to
the initial axioms in D.

The graphical calculus that we thus obtain is comparable to the string diagram calculus
for proarrow equipments of David Jaz Myers [40].

Given the isomorphisms between the three different ways of representing arrows of free
bifibrations—as sequent calculus proofs, as stacks of double cells, or as string diagrams—in
the sequel we will freely interweave them without comment.

2.7. Related work. Since Bif(p) and II5(C) are determined by their universal properties,
a detailed comparison with the constructions of Dawson, Paré, and Pronk (DPP) [12] and
of Lamarche [29] feels a bit superfluous, and the reader interested in the details of those
constructions is referred to those papers. Still, a few points are worth highlighting. Zigzags
and morphisms between them are essential in all three constructions, but whereas Lamarche
(like us) considers zigzags as not necessarily alternating sequences of signed arrows, DPP
restrict to strictly alternating zigzags beginning and ending with a forward arrow. This is
motivated by the fact that they wanted the embedding of € into II2(C) to define a strict
functor (—)" : @ — II3(@) rather than a pseudofunctor. Although the free bifibration is
not split and hence (=)' : € — V(Z(Q)) defines a proper pseudofunctor, we will also have
motivations to consider strictly alternating zigzags beginning in Section 3.3.

All three constructions likewise involve first introducing some notion of “pre-morphism’
between zigzags and then defining zigzag morphisms as equivalence classes of pre-morphisms
modulo an equivalence relation. Lamarche notes that “these classes can be quite complex,
and there is no hope of finding normal forms in general” [29, p.16]. In the next section we
will establish that it is possible to obtain normal forms in the case that the base category is
factorization preordered, a condition that was also identified by DPP as a sufficient condition
for decidability.

Interestingly, categories and double categories of zigzags have also been introduced in
other contexts. A category of zigzags and zigzag morphisms was defined by Heidemann,
Reutter, and Vicary [19] motivated by the formalization of higher-dimensional diagrams and
n-categories. Their zigzag category is not equivalent to Z(C), but appears to be equivalent
to Lamarche’s category R(C), from which P(€) ~ Z(C€) is obtained as the quotient by
permutation equivalence. Our zigzag double category Z(€) appears to be equivalent to the
“weave double category” defined by Williams [52] as a 2-coproduct of arrow and oparrow
double categories. As already mentioned, Lamarche first identified the double category
structure on P(C) ~ Z(€), although it was not emphasized in his papers [29, 30].

Perhaps one of the most interesting open questions in double category theory is an
explicit construction that freely adds companions and conjoints to a double category D.
For each category €, there is a double category H(C) whose objects and tight morphisms
are the objects and morphism of €, and whose loose morphisms and cells are identities. In
Theorem 2.8, we established Z(C) as the free companion and conjoint completion of the
double category D = H(C). The free cornering of a strict monoidal category, introduced by
Nester [41] (see also Section 1 of [8]) is another example of a free companion and conjoint
completion, in this case, of a strict monoidal category viewed as a double category.

i
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3. FOCUSED NORMAL FORMS

In Section 1, we described how to construct Bif(p), the total category of the free bifibration
on a functor p : D — G, by taking its arrows to be equivalence classes of derivations in a
sequent calculus modulo a notion of permutation equivalence, with composition defined by
the admissible cut rule. In this section we will use additional ideas from proof theory—in
particular the notion of focusing originating in the proof theory of linear logic—to get a
more precise characterization of the relative homsets Bif(p) (S, T), via a series of sequent
calculi with progressively more rigid structure. In the case that C is factorization preordered
in the sense of Johnstone [22], we derive a normal form theorem that leads to a complete
inductive characterization of these relative homsets, without any quotienting. As a corollary,
we obtain a simple procedure for deciding permutation equivalence of derivations, as well as
for enumerating relative homsets without duplicates.

Lurking in the background is the fact that in the general case, permutation equivalence
is undecidable. Dawson, Paré, and Pronk [13] established an analogue of this undecidability
result for their freely adjoining adjoints construction IIz(€), and their proof translates readily
to our presentation of the zigzag double category Z(C). Nevertheless, we will see in Sections 4
and 5 that the canonicity result has wide applications.

3.1. Background: invertibility, polarity, and synthetic connectives. Focusing, in-
troduced by Andreoli [2] as an optimization for linear logic proof search and subsequently
applied in other settings, combines several observations about the rules of sequent calculus
and the way that they determine the behavior of the connectives. To provide some context
and motivation for our approach, we take a moment here to briefly recall these observations
in the setting of linear logic, before explaining how to transfer these ideas to analyze free
bifibrations.

We consider a fragment of the sequent calculus for intuitionistic linear logic, containing
the inference rules for tensor ® (also called multiplicative conjunction) and internal hom —o
(also called linear implication):

ABTHC — TrA ArB__ TrA  BArC I A B
AQBTrC™® TAr4eB ® ALBT.A-C "  Tr4A—B

Here the basic judgment I' — B takes a single formula B on the right and a list of
formulas I' = A4,..., A, on the left considered up to reordering, and we write a comma for
concatenation of lists. The above inference rules are combined with initial axioms of the
form X + X for every atomic formula X. Identity derivations for arbitrary formulas as well
as the cut rule

A A A+B

id ¢
A A AL B .

are admissible, similarly to how we saw in Section 1.

A basic observation about the inference rules for the logical connectives is that the rules
L® and R—o are invertible in the proof-theoretic sense, meaning that if the conclusion is
derivable then the premise is derivable. Indeed, we can derive inverses of L& and R—o using
the admissible cut and identity rules, combined with instances of R®Q and L—o:
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A A B+ B A A B+ B
A B-A®B AR B, T+ C I'-A—-B A—-BA+-B
A BTHRC I''A+ B

One interest of invertible inference rules is that they may be safely applied as goal transformers
during proof search. For example, if our goal is to prove a sequent of the form A® B,T' + C,
we can immediately apply the L® rule and try to prove A, B,T" -~ C, knowing that if there is
any proof of the original goal then there is one that goes via L&. Moreover, if a goal matches
the conclusion of more than one invertible rule, then the order in which these rules are
invoked is irrelevant. For example, a goal of the form AQ B,I' — C' — D can be transformed
into the equivalent goal A, B,I', C' — D by applying the L& and R—o rules in either order.

On the other hand, the rules R®Q and L—o are not invertible in this sense. Intuitively,
this is due to the fact that list concatenation is not an invertible operation, meaning that
passing from the conclusion to the premises requires finding an appropriate splitting of the
formulas on the left-hand side of the turnstile. As a simple counterexample to invertibility of
R®, consider the sequent X Y - X ® Y. It is derivable, but attempting to prove it using
the rule R® produces two unprovable premises—no matter how we decide to distribute the
unique formula on the left of the sequent:

XQRY X Y X XQY LY
XRQY -XQY XRY -XQY

Focusing originally arose from the idea that proof search could be structured to alternate
between an inversion phase, during which invertible rules are applied eagerly as goal
transformers, and a focus phase, during which non-invertible rules are applied to decompose
a single formula and its subformulas. It was found that this greatly reduces the overall
non-determinism of the sequent calculus, leading to more efficient proof search. Moreover,
an interesting duality emerges, with half of the connectives being invertible on the left and
half being invertible on the right.

This left or right bias was referred to as “polarity”—with ® being a positive connective
and — a megative connective—and helped to explain some of the distinctive associativity,
distributivity, and non-distributivity properties of linear logic. For example, like tensor,
additive disjunction @ is also invertible on the left, and distributes through &® by the
equivalence AQ (B@®C) = (AR B)® (A®C). Similarly, additive conjunction & is invertible
on the right, like internal hom, and distributes through the codomain of — by the equivalence
A—o (B&C)=(A—oB)&(A—0C).

Related to these properties is the possibility of considering certain compositions of the
logical connectives as “synthetic connectives” [3]. For example, consider the composite
formula A; — (Ay — B). By applying the left rule twice and the right rule twice, we can
build the following open derivations:

Iy A B,AI—CL I''A, Ay B
' A4, Ay — B, Iy, A+ C L_O I''Ai Ay —o B
Al—O(AQ—OB),Fl,FQ,A}—C FI—Al—O(AQ—OB

—o

)R—o
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If we remove the intermediate steps, then these derivations could be seen as inference rules
for a new ternary connective (Ay, Ag) —' B:

'+ A I's = As B,AI—CL , I'A, Ay B R
(AlﬂAQ) —' BvF17F27A =C '~ (AlaAQ) _O/B

Adding this new connective and these inference rules preserves all the important properties of
the sequent calculus, in particular admissibility of identity and cut. On the other hand, not
every combination of basic connectives can be viewed as a first-class, synthetic connective.
For example, there is no good way to define a right rule for the composite connective
A —o (B1 ® B»), intuitively because after applying the invertible rule R— to decompose the
outer implication, we may need to examine the formula A on the left before applying the
non-invertible rule R® to decompose the tensor.

3.2. Invertibility and polarity in the bifibrational calculus. Returning to bifibrational
logic, we begin by observing that pushforward behaves like a positive connective and pullback
like a negative connective, since f* has an invertible left rule and non-invertible right rule,
while g~ has an invertible right rule and non-invertible left rule. We already established
the invertibility of Lft and Rg~ with Lemma 1.11, in the strong sense that they define
bijections between proofs of their premises and proofs of their conclusions up to permutation
equivalence. Indeed, for any derivation « : f* .S =, T there is a permutation equivalent
derivation ending in the Lf" rule, namely the one represented by the term f\, (fs - @),
which is Lf* applied to the derivation of S =, T obtained by cutting « with the cartesian
lifting fg : S = f* S. Dually, for any derivation 3 : S = g~ T there is a permutation
equivalent derivation ending in the Rg™ rule, namely (5 -g7) /G-

To see why the Rf" rule is not invertible in general, consider the free bifibration on the
functor depicted below

)
D x~ vy
l o
e E- *a-t.B
~_ 7

where the base category C contains two parallel arrows eq, es and a third arrow f such
that e; f = eaf = h, and where D is generated by a single arrow 0 such that p(§) = e;.
Observe that the sequent X ==} f*Y is derivable by applying Rf" to the atomic derivation
d: X =, Y. Since h = ey f is another valid factorization, if the Rf" rule were invertible
then there should also be some derivation of X =, Y. But by conservativity (Prop. 1.23)
we can immediately tell that there isn’t, contradicting invertibility of Rf*. Dualizing the
example establishes non-invertibility of the Lg™ rule. Of course these counterexamples do
not preclude the possibility of Rf" and Lg~ being invertible in specific cases—for example,
they will be when C is a groupoid. Nevertheless, the behavior of the connectives in the
general case justifies our adopting the polarity terminology to bifibrational formulas, and
from now on we will refer to pushforwards as positive and pullbacks as negative, with atomic
formulas having neutral polarity.

Continuing the analogy with linear logic, compositions of like-polarity connectives may
be grouped into synthetic connectives, in the sense that g+ f* can be represented by (g o f)"
and f~ g~ can be represented by (f g)~, corresponding to the pseudofunctoriality laws of a
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bifibration. We already explained how these laws are witnessed by logical equivalences in
the bifibrational calculus (Prop. 1.21). Here we simply point out that, similarly to the linear
logic situation discussed in Section 3.1, the inference rules for the synthetic connectives
are operationally equivalent to compositions of basic inference rules, in the sense that, for
example, by composing the left rules and right rules for pushforward along f and g,

S=T S =S
S R
ffS=—T S'—fr5
gh Lg+ L Rg+
FIS—T =g 5
h f'fg
we obtain derivations with identical premises to the rules for the pushforward along g o f:
fgh + ' +
L R(gof)
(gof)'S =T e ) §' == (g0 f)" S
g

A difference with the linear logic situation is that such “synthetic” connectives are already
contained in the logic, since we assume pushforward and pullback along arbitrary arrows, and
the arrows of a category are closed under composition. On the other hand, in general it is not
possible to reduce opposite-polarity composites like f© ¢~ or g~ f* to a single pushforward
or pullback, just like alternating quantifiers 4V or 3V in predicate logic cannot be reduced to
a single quantifier in general.

3.3. Strictly alternating formulas and weak focusing. Motivated by the preceding
observations, in this section we introduce a restriction of the sequent calculus in which
sequences of invertible rules and sequences of non-invertible rules must be performed all at
once, on the left or right, but without (yet) placing any restrictions on their interleavings.
This calculus may be said to be “weakly focused”, and will serve as an intermediate point
before our introduction of a strongly focused calculus in the next section.

3.3.1. Strictly alternating formulas. Before defining the calculus itself, we motivate it logically
and categorically by observing that every bifibrational formula is canonically isomorphic to
a strictly alternating formula.

Definition 3.1. A bifibrational formula is strictly alternating if it contains no subformula
of the form ¢g" ff Sor f~g T.

It is easy to see that by repeatedly applying the equivalences g+ f*S = (go f)" S and
f7g T=(fg) T (Prop. 1.21), any formula S may be normalized to a logically equivalent
strictly alternating formula [S]. Let us write fg : S = [S] for this family of equivalences,
and define a function on derivations

[ (S=yT) — (18] = 1)

-] = « — 05l a0

which we call the strictification map. Observe that by the subformula property (Prop. 1.1),
the strictification map transforms any derivation into a derivation involving only strictly
alternating formulas, since every subformula of a strictly alternating formula is strictly
alternating.
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Now let saBif(p) denote the full subcategory of Bif(p) spanned by the strictly alternating
formulas, let i : saBif(p) — Bif(p) be the full and faithful inclusion functor, and let us write
Aplsa = Ap 0i : saBif(p) — C for the restriction of the domain of the free bifibration to
strictly alternating formulas.

Theorem 3.2. Strictification extends to a functor [—] : Bif(p) — saBif(p) realizing an
equivalence of categories over C:

Bif (p) saBif (p)
AP Aplsa

Proof. Tt is immediate from the definition of the [—] map on derivations that

(1) it respects permutation equivalence (since, by Lemma 1.9, cut does so);

(2) it satisfies the functor laws [a - 8] ~ [a] - [#] and [ids] ~ idg) (since the derivations O
and 05" cancel out);

(3) it leaves the underlying objects and arrows in € unchanged;

(4) it is invariant on derivations in the strictly alternating fragment.

Hence strictification defines a functor [—] : Bif(p) — saBif(p) that commutes with the

projection functors and such that [—]oi = id,g¢(p)- Finally, the family of logical equivalences

05 : S = [5] realize an isomorphism i o [—] = idg;¢(,) that is natural by construction. Indeed,

it suffices to show that the square

.

T
3

]

S

esl

2 [S] W 2

commutes for every arrow a : S — T in Bif(p), which is equivalent to asserting that every
derivation o : S == T may be factored up to permutation equivalence as

—

S%T~SHES[S]?[T] T, (3.1)
This holds by definition of the strictification map [—], as we have
Os-[a]-0r = Os-(05" -a-07")-0r ~ «
[

Corollary 3.3. The functor A,|s, @ saBif(p) — € is a bifibration.

Remark 3.4. The bifibrational structure of Ap|s, may be described explicitly, with the
pushforward and pullback of strictly alternating formulas in saBif(p) along arrows of C
defined by cases depending on the polarity of the formulas, so as to ensure strict alternation.

For instance, the pushforward of a strictly alternating formula S = A along an arrow
f A — B is defined as follows:
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e If S is negative or atomic, then the pushforward is given by f S equipped with the “free”
cartesian lifting fg: S — f+S.

e If S is positive, i.e., of the form S = f* S’ for some S’ = A’ and f': A’ — A, then f* S
is defined as the pushforward along the composite f+ S := (f o f'}" S, equipped with the
cartesian arrow given by composing fs : f/7 8" — ft ' S’ with the logical equivalence
FPfrs =(fof)s.

The pullback is defined symmetrically.

It is worth observing that the resulting bifibration is nearly split: the pushforward and
pullback functors preserve composition on the nose, but identity is only preserved up to
isomorphism witnessed by the logical equivalences (1.12). Thus the associated pseudofunctor
C — Adj representing the bifibration saBif(p) — € is not fully strict (it is not “normal”),
although it is a strict functor of semicategories. It is clear that a split bifibration could be
obtained by adjusting the construction and dealing carefully with identity arrows, but we
do not pursue this as it is not our aim in this paper. ]

Theorem 3.2 says, in a sense, that the strictly alternating fragment of the sequent
calculus adequately represents the full calculus up to equivalence of formulas. We now
introduce a new sequent calculus, whose purpose is to force strict alternation at the level of
derivations without restricting the language of formulas. It does this by performing multiple
inference steps at once, in one large step, precisely where the [—] translation would force
them to be grouped together.

3.3.2. A syntax of alternating formulas. Strictly alternating formulas [S] admit a simple
inductive characterization: a formula is strictly alternating just in case it is either atomic
X, or the pushforward f* [N] of a non-positive strictly alternating formula, or the pullback
g [P] of a non-negative strictly alternating formula.

[5] == [P] | [N]
[Pl == X | fH[N]
[N] s= X | ¢ [P]

Here we use “non-positive” and “non-negative” in the expected sense, to mean that N
is either atomic or a pullback formula, and P is either atomic or a pushforward formula.
Note that our definition of strictly alternating allows for pushing and pulling along identity
arrows.

In fact, any bifibrational formula can be described in a similar alternating way, if instead
of pushing or pulling applying a single arrow f or g, we push or pull along a sequence ,
where 7 denotes a non-empty sequence of composable arrows (fo, ..., f,). We introduce an
explicit strictly-alternating grammar for arbitrary formulas S, non-positive formulas N,
and non-negative formulas Ps,.

Ssa = Psa | Nsa
Py, == X | 7 Ng
Neo = X | m Py

Formulas described in this way can be interpreted in two different ways, depending on the
interpretation of sequences m = (fo,..., fn):
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= (fo,-- fn)

Qu =0 | Ty | T\g Q| Q. |t £/ T

§:X>YeD pd)=f

6
0: X=Y
f
ay: N=T Qy 1S = N
™g f i
Lzt —— Rm
T\gu:m N=T Oéw.’]TZSf:>7TN
g s
p: P=T Qy 1S =P
g _ J _
L — — R
T.og:m P=T Oéwf/ﬂ'ZS?ﬂ‘P
g

Figure 3: Rules of the weakly focused calculus.

(1) If we interpret 7" as an iterated push f,7--- fo©, a formula S, in alternating syntax is
interpreted as an arbitrary formula (not strictly alternating) that we denote [Ssq].

(2) If we interpret 7 as a push along the composite arrow [7] := fo - fn, a formula Sy, is
interpreted as a strictly alternating formula that we denote |Ssq].

For example if we take Ny, = (f, )" (h,i)” X, we have [Ny,| = g f* hm i~ X and | Ny =
(f ¢)" (h i)~ X. All bifibrational formulas are in the image of [—], all strictly-alternating
bifibrational formulas are in the image of |—|, and for any Ss, we have |Ssq| = [[Ssal]-

To keep notations lighter, we write S to mean either a bifibrational formula S or its
alternating presentation (the unique Ss, determined by [Ss.| = 5).

3.3.3. Weak focusing as a syntax of alternating derivations. We now introduce a weakly
focused calculus as a sequent calculus on formulas in the alternating syntax. We present the
inference rules in Figure 3 at the same time as a more compact term syntax for derivations,
similar to one that we introduced in §1.3.

Just as formulas Sy, in alternating syntax admit two natural interpretations, each deriva-
tion a1 Ssqa == Tsq in the weakly focused calculus admits two additional interpretations
besides its formal interpretation as a sequence of applications of the above rules:

(1) As a derivation [aw | : [Ssa] = ¢ [Tsa| in the unrestricted sequent calculus, by expanding
the “big-step” rules L7, Rr™, Lo, and R7™ appropriately in terms of the “small-step”
rules Lf™, Rf, Lg~, and Rg~. This corresponds to translating 7 \g ay to [ \g | =
7 \g |w], where 7\g o is defined as the iterated division f, \g- -+ fo \f,... f,g @ translating
QT 10 [y | = [y |7, where a.7 is defined as a.fy - - - . fy,, and so on.

(2) As a derivation |ay] : |Ssa] = |Tsa| in the strictly alternating fragment of the
unrestricted sequent calculus, by interpreting each instance of L7t, Rnt, etc., as a single
instance of LT, Rf", etc., on the composite arrow [r] = fo -+ f,. This corresponds to
translating m \4 o, to a single left division |7\ cvw| = [7] \g |w], translating ov,.7 to a
single right multiplication |au,.7| = |aw].[7], and so on.
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When we remain ambiguous about whether S denotes an arbitrary bifibrational formula or
its alternating syntax, we can write that for any o, : S = T, we have [a]| : S =5 T
and || : [S] = [T].

3.3.4. Completeness of weak focusing. We will use the following properties of iterated
divisions and iterated multiplications on unrestricted derivations.

Lemma 3.5 (Iterated identity). = \ (idg.7) ~ idw g and (7.idy) /T ~ idp for all
compatible formulas S, T and sequences of arrows .

Lemma 3.6 (Iterated cut). (a.m) - (7\p, B) ~ a- B and (a 4/ 7) - (T.B) ~ - B for all
compatible derivations o, 8 and sequences of arrows .

Proof. Both straightforward by induction on 7. []

We can now give explicit derivations for the equivalences g : S = [S], by defining for every
S & A a pair of (unrestricted) derivations

fs:S = [S] 05" [S] =S

ida id g

as follows. (We omit the subscript arrow on the division signs below, which is always id4.)
Oy =7\ Ox.[)) 021y = [7])\ (05"7)
O p=([r0p) /7 6 p=(705")/[n]
Ox = 03" =idx
By appealing to Lemmas 3.5 and 3.6, we have:
Proposition 3.7. g and 9;1 are inverses up to permutation equivalence.

Proof. For example in the case S = 7 N we have:

Ot v - 0 = (1 \ (O [7])) - ([7]\ (0" )

~7\ (On - 05" .7) definition of cut
~m\ (idy .7) induction hypothesis
~id+ N Lemma 3.5
0y = ([7]\ (O ) - (w\ (On-[7]))
~ 71\ (05" - On-[7]) definition of cut and Lemma 3.6
~ 7]\ (idy .[7]) induction hypothesis
1d[ IF N definition of identity

[

On formulas we remarked that we have the relation |S| = [[S]]. There is a similar relation
at the level of derivations.

Proposition 3.8. For any oy, : S =5 T we have |ay| ~ [[aw]].
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Proof. By induction on the weakly focused derivation a,,. For example, in the case that ay,
is of the form 7\, o), : 77 N =, T, we have

[[7\g a1 = ([7]\ (Ox".7)) - (7 \g [a,]) - O by definition of [—] and [—]
~ 71\ (08" - [ew] - Or) definition of cut and Lemma 3.6
~ 7]\ | o] induction hypothesis
= |7 \g Q] definition of |—|

[

We remarked above that every bifibrational formula is of the form [Ss,|, and every
strictly alternating formula is of the form |Sss|, where Sy, is a formula in alternating syntax.
The situation for derivations is different: all strictly alternating derivations are of the form
||, but not all unrestricted derivations are of the form [ay,|—it is really a more restricted
syntax. For example, the derivation on the left below is not in the image of [—], but it is
permutation equivalent to the derivation on the right, which is:

Sf:h>'T Sf:h>‘T
ghi ghi _
— L ——— R
ffS=1mT I S=1i T !
S — S —
ffS8S=iT ffS=iT

gh 4 gh 4
¥ — Ly T — Lg
gﬁS?zT gf+S=h>zT

Proposition 3.9. The mapping |—| is a one-to-one correspondence between weakly focused
deriwvations of Ssa =5 Tsq and unrestricted derivations of strictly alternating sequents
|Ssa] =1 [Tsal-

Proof. We prove that for any judgment Sy, == T}, if o is an unrestricted derivation of
|Ssa]l = |Tsal, then there exists a unique weakly focused derivation a, such that o = |ov,].
The proof proceeds by induction on the product ordering of the two sides of the sequent
(Ssa, Tsq) with respect to the subformula ordering. We will have more occasions to use this
style of induction in the rest of this section, which we refer to as induction on judgments.
The associated well-founded ordering on judgments is defined explicitly by

(§' = 1T') < (S = T)

just in case S’ is a subformula of S, T’ is a subformula of T, and either S’ is a strict
subformula of S or T” is a strict subformula of T. We now proceed to the proof.

If « is an axiom rule then it is already a weakly focused proof.

If « is of the form f\g4 &'

o S = |Ts|
fg

f\go: [T 8 ? | Tsa ]

then from f* S’ = |S|s, we can deduce that Ss, must be of the form 7 N, so f is uniquely
determined to be 7] and S is [N]. So in fact the derivation of « is of the form

o [N] T; | T

[ \g o' s [7]" [N] = |Ta
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By induction hypothesis, there exists a unique o/, such that o/ = |a,|, so « is necessarily
equal to [7] \4 |ay,], and o, := 7\ @), is uniquely determined.
The reasoning is symmetric when if « is of the form f.o/. L]

Corollary 3.10 (Completeness of weak focusing). For any derivation o : S = T', there
is a weakly focused derivation o, : S == T such that a ~ [a,].

Proof. Let [a] : [S] == [T] be the strictification of «, and let v, : S ==y T' be the unique
weakly focused derivation such that [«] = ||, which exists by the previous proposition.
In particular, [«] and [[ay]] are equal as saBif(p) morphisms, so by Theorem 3.2 we have
that a and [ay,| are equal as Bif(p) morphisms, that is, a ~ [auy]. []

3.3.5. FEquivalence of weakly focused proofs. There are two reasonable notions of equivalence
on weakly focused proofs au,, Bu:

e One can consider the relation [, | ~ [Bw|, which views ay,, B, as unrestricted derivations
and considers permutation equivalence between them. Such a proof of equivalence permutes
inference rules one at a time, and in particular it may contain intermediate steps that are
not weakly focused derivations.

e One can consider the relation |au,| ~ |By|, which views a,, and 3, as derivations on
strictly alternating formulas. Such proofs of equivalence respect the strictly-alternating
structure in the sense that they cannot break sequences of pushes or sequence of pulls
apart. They can be seen as permutation equivalences on “synthetic” connectives.

Corollary 3.11. These two notions of equivalence coincide.

Proof.

lovw | ~ | Bu]

Proposition 3.8 Theorem 3.2
< <

[Taw]] ~ [[Bwl] [ow] ~ [Bu] T

3.3.6. Presentation. The results of this section can be reformulated as an alternative pre-
sentation of the arrows of Bif(p) as triples (S, du,T"), where &, € saBif(p)(S,T) is a
permutation-equivalence class of weakly focused derivations oy, : S == T'. Weak focusing
removes some of the inessential non-determinism of the sequent calculus, but it is possible
to go further and obtain a still more canonical presentation, as we will now examine.

3.4. Multifocusing.

3.4.1. Introduction. The previous calculus was only “weakly” focused in the sense that it
allows applying non-invertible rules to derive a judgment even where an invertible rule is
applicable. It would be more canonical to enforce that invertible rules are applied eagerly.
For instance, if we have a positive formula on the left then we can always apply an invertible
left rule, and if we have a negative formula on the right then we can always apply an
invertible right rule. In the case of a sequent of the form 7t N = p~ P with both a positive
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formula on the left and a negative formula, it seems we have a useless choice to make of
whether to work on the left or right first:

N=—P N=—P
Ie Lt fpi Ry
7t N=—P N=p P
fe _ Ip i
— 5 kv —— ——5 Lr
7TN=f>pP 7TN=f>pP

The choice of whether to apply R~ or Lpt first is irrelevant, since the two derivations above
are permutation equivalent. However, a natural way of addressing this issue is to add a rule
that can perform both left and right inversion at once. By combining such a bi-inversion
rule with polarity-restricted instances of the left- and right-inversion rules,

N :>7rf P N 27#[) P

N =, P
- 5 L=t T -
T N—P T N—p P

L M R*
N—,;p P " (3.2)

LmtRp~

we can enforce that non-invertible rules are only used on polarized sequents of the form
N = P, with a uniquely determined invertible rule applicable in all other cases. We say
that such a system, with a polarity restriction on non-invertible phases, is strongly focused.

Once we arrive at a sequent of the form N = P we have to make a potentially
significant choice as to whether to try applying a non-invertible rule on the left or right
first. However, here a similar phenomenon arises in considering permutable applications
of non-invertible rules. Again it is natural to introduce a rule that allows to perform two
non-invertible rules in parallel, written in the middle below:

P—:Q P=—;:N N=—M
f _ f ot f
— . A Lo - T~ LooRT ~ T a7
o P=,;Q o P=,p 7" N N=y 17 M

.
R (33)
The collection of six polarized rules (3.2) and (3.3), together with the ordinary axiom rule,
together define a system that we call strongly multifocused.

Strong focusing and multi-focusing are standard notions from the literature [11, 48].
Going from a weakly-focused to a strongly-focused system (enforcing that invertible rules
are applied eagerly) makes the system more canonical. On the other hand, introducing
multifocusing (the bi-focusing rule Lo~ R7" in our case) does not automatically make the
system more canonical, since it actually allows more proofs: every time a bi-focused rule is
used, it is also possible to use two mono-focused rules in sequence. In Section 3.6 below, we
will explain how to restrict this system by limiting the usage of mono-focused rules, resulting
in a calculus that is canonical under an assumption on the base category.

In Figure 4 we recapitulate the rules of the strongly multifocused system while introducing
a term syntax.

3.4.2. Neutral sequents, bipoles. Following the focusing tradition, we call neutral a sequent
of the form N == P. A proof of a neutral sequent has to start with a focusing step, either
on the left, right or both sides of the sequent.

Following the same tradition, we call bipole a two-step (open) derivation of a neutral
sequent beginning with a focusing step followed by an inversion step. We use the notation L
for a bipole of L™ L~ rules, R for a bipole of R~ R" rules, and LR for a bi-focused bipole
(LR™) (L"R"). In order to avoid having to treat atomic formulas as a special case, we will
now expand the interpretation of the L7, Rp~, and L7t Ry~ rules by allowing 7 (respectively,
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Q= O
| T.am, | .7 | T.apm.T
| m\gam | amg/P | W\aén/ﬁ
60: X —>YeD p(5)=f5
0: X=Y
f
Qi N = P QN =P am: N= P
mf Lt mfp LrtRo™ fe _
. m 5.1 N - P p — — Rp
m\f O 27T N = P W\a}n/pw = Om /P N == p" P
QP = Q Q : P=—= N am : N =M
f Lo~ f Dt f +
— — 0 — — - LoRr T RT
0.0 0 P=—(Q c.omT:0 P=—71" N am.T:N=71"M
of oft fr

Figure 4: Rules of the strongly multifocused calculus.

p) to be empty when the left (respectively right) side of the sequent is atomic. With that
convention, every strongly focused proof of a neutral sequent decomposes as a sequence of
L / R / LR bipoles ended by an axiom.

3.4.3. Sequentialization equivalence of strongly multi-focused proofs. The permutation equiv-
alence that we introduced in Section 1.5 and extended to weakly focused proofs is not
directly applicable for strongly focused proofs. Indeed, permutation equivalence breaks
the polarity invariants that we described above. However, there is a natural notion of
equivalence for strongly multifocused derivations that arises from considering both possible
sequentializations of a LR bipole:

N?P
Tfp _
L7*R
7T+N:p7Pﬂ- P
R
oconmn N=71"p P
ofr
A}f se%
Lﬂ_Rp_ +ﬂ-7fp|_7.r+
N=yp P nmn N = P
wf R fp _
~ T — 5 7 ———~ Lo
N=rT1p P on N=P
Tfr + afp _
+ + — L — + — Rp
T N=71"p P ocn N=p P
R I T —p Lo — CTf+— Rr*
on N=r71"p P ocn N=71p P

ofr ofr
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Or equivalently in stack-and-string diagrammatic form:

| k™ et |
~]7rf»- L _Te = fp
| 5 A R A el |
Spmprf e ——— T . ———— - Lofph -
seqR seq'-
Lol = herd TR R T
=S . c—of >
Nl | | R A

Or equivalently again in proof term syntax:

7 \ge (Bt PV € TTNB D)7 o (@ \rp B os/ PV (30)

Recall that we allow 7 and p to be empty, ™ = € or p = € (in which case, e.g., €\ @ = «).
Let us write (—seq) for this sequentialization order, and (~seq) for the corresponding
equivalence relation.

3.4.4. Relating the weak-monofocused and strong-multifocused systems.

The (—seq)-normal forms of this relation are the strongly monofocused proofs—in other
words proofs that do not use the bi-focusing rule, although they can use bi-inversion. Such
proofs can then be turned into derivations in the weakly focused calculus by selecting an
ordering for each bi-inversion rule. We define Seq(a,) as the set of weakly monofocused
sequentializations of a strongly multifocused proof a,.

Proposition 3.12. If oy, ~seq O, then for all au, € Seq(auy,) and o, € Seq(a;,) we have

Qyy ~ .

Proof. The idea of the proof is that for any non-deterministic choice in the sequentialization
process, the two choices will sequentialize into permutation-equivalent derivations.

The first choice comes from the definition of the sequentialization order between mul-
tifocused proofs. For each o with two direct sequentializations a1, agy as depicted in (3.4)
above, we have that Seq(a) = Seq(a1) w Seq(az), and we prove that for any ag,, € Seq(a)
and ag,, € Seq(ag) we have ay,, ~ ag,,. Indeed, the two sequentializations sets are

Seq(ar) = {7.(m\ ((Bw ¢/ P).7)) | Buw € Seq(B) }
Seq(az) = { ((@.(m\f Bw)) /P).T | Buw € Seq(p) }

and for any 3, € Seq(8), we do have as expected:
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The second choice is in the ordering of inversion rules when sequentializing bi-inversion
rules, and the two choices are immediately permutation-equivalent. []

Corollary 3.13. All elements of Seq(ayy,) are permutation-equivalent: for any o, we have
O ~seq Om; SO Oy € Seq(auy,) and o, € Seq(auy,) imply ay, ~ af,.

Conversely, given a weakly focused derivation ay, : S =, T, let us write S(a,) for the
strengthening of au,, a uniquely-determined strongly (mono-)focused proof defined as follows,
by induction on judgments:

S(a: 7" N =y p P) = w\S(ry-a-Ppp:N=4,P) /P
S(T.a):07 P=4,;Q) := 7.S(a:P—=;Q)

S(r): N =y, 7" M) = S(a:N =7 M).7

S(O: X =Y) =9

In other words, to strengthen «,,, whenever we encounter a judgment that admits invertible
steps, we do them (both at the same time if applicable), and otherwise we imitate the
non-invertible steps.

This strengthening transformation defines a mapping from weakly focused derivations
to strongly focused derivations of the same judgment. We now establish that it sends
permutation equivalent weakly focused derivations to sequentially equivalent strongly focused
derivations.

Proposition 3.14. If oy, ~ o, then S(ay,) ~seq S(ary,).

Proof. By induction on the underlying judgment derived by both derivations ay, ~ ao,.
There are two cases to consider, depending on whether or not the judgment is invertible.

e Case nt N = p P. (Recall we allow m = € or p = ¢.) We have

S(aw) =T\ S(TN - Qw  Pp) /P ~seq T\ S(TN - @y - Bp) / B = S(aty,)

where the first and last steps are by definition and the middle step is by induction on
TN - Qu - Pp ~ TN - Oy, - pp at the smaller judgment N =, P.
e Case N =) P. We consider the derivation of the permutation equivalence oy, ~ .

— Subcase a,, ~ al, is derived by the generator (1.2), with «,, = (f.5).h and o, =
f.(B.h). In this case the two strengthenings are sequentializations of the same bi-
focused derivation f.S(3).h.

— Subcase a,, ~ «), is derived by a generator (1.3)—(1.5): impossible at the judgment
N >} P.

— Subcase a,, = f.0 and a, = f.3' for some B ~ ' : Q =, P where N = f~ Q. Then
S(B) ~seq S(B') by induction and so S(aw,) = f.S(8) ~seq f-S(B") = S(c,).

— Subcase ay, = B.g and o, = §'.g for some § ~ 3’ : N =, M where P = g~ M: same
as above.

[
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The relation between permutation equivalence and sequentialization equivalence is
captured by the following diagram:

S

/_\/\

(WeakMono(S, f,T),~) ~ (StrongMono(S, f,T), Nseq) ~  (StrongMulti(S, f,T), ’”seq)

\Inyéeq/\}:o?éeq/

where we have factored sequentialization Seq(—) in two different nondeterministic / multival-
ued functions: FocSeq(a,,) is the sequentialization of the bi-focused rules of a multifocused
proof, and InvSeq(a,) is the sequentialization of the bi-invertible rules of a strongly mono-
focused proof. This diagram expresses two equivalences of setoids (sets equipped with an
equivalence relation), in the following sense:

(1) S is a morphism of setoids, per Proposition 3.14. (This gives us completeness and

relational completeness of strongly focused proof with respect to weakly focused proofs).
(2) InvSeq and FocSeq are nondeterministic morphisms of setoids, per Proposition 3.12.
(3) The equivalence on the right corresponds to the following statement:

o, ~ FocSeq(ay,)
Val, € FocSeq(aum), ), ~seq Qm

It is immediate from the fact that FocSeq(a,) is defined as the set of (—seq)-normal
forms of a;,, and (~seq) as the least congruence containing (—seq)-
(4) The equivalence on the left corresponds to the following statements:

Proposition 3.15.

Vo, ay ~ InvSeq(S(ay))
Vau, Vol € InvSeq(S(aw)), aw ~ al,

Proposition 3.16.

Vm, Qm ~seq S(INvSeq(ap,))
YV, Vay, € InvSeq(aurn),  Qun ~seq S(w)

For each property, on the first line we wrote the statement with InvSeq seen as a multi-
valued function nondeterministically returning a weakly focused proof, and on the second
line we wrote it with InvSeq seen directly as a function into sets of weakly focused proofs.
Both statements can be established by induction on derivations; we detail the proofs in
Appendix A.2.

The intermediate system StrongMono is useful to describe the fine-grained properties
of strengthening and sequentialization, but note that the equivalence relation (~seq) has
no natural definition that is internal to StrongMono, since the source derivation a, of a
sequentialization step v, —seq al, uses a bi-focused rule.
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3.4.5. Horizontal composition (cut) of strongly multi-focused proofs. Now that we have
defined strengthening, sequentialization and their properties, we can easily define horizontal
composition (cut) of strongly multifocused proofs modulo permutation equivalence: oy, - B,
can be defined as S(ay, - By) for some a,, € Seq(am), Buw € Seq(Bm). The choice of ay,
and f,, is irrelevant: they are all permutation equivalent, so the resulting strengthening is
unique modulo sequentialization equivalence. This definition is easily seen to be associative
(lifted from the associativity of composition of non-focused proofs) and unital—for identity
derivations defined as the S(id4). Finally, we also directly get that S(—) respects composition
and preserves identity derivations.

We can thus define a category of strongly multifocused derivations quotiented by (~seq),
with S(—) a functor from Bif(p). But this category is just Bif(p) itself, given that our
equivalence of setoids gives an equality of quotiented sets.

It is also possible to define cut directly on strongly multifocused derivations. We detail
this construction in Appendix B.

3.5. Normal forms via rewriting. In this section we introduce a strongly normalizing
rewriting relation between multifocused proofs that, under a certain condition on the base
category, is locally confluent and thus admits unique normal forms: all proofs in each
sequentialization equivalence class eventually reduce to the same normal form.

An intuition is that these normal forms will be “maximally parallel”, in the sense that
L and R bipoles should be combined into an LR bipole whenever possible. We therefore
begin by considering the parallelization order (—pa), which is just the opposite of the
sequentialization order (o —par B iff f —seq ). Diagrammatically it is defined by the pair
of rules parf and park shown below:

| & % S
c—Tf> - - —fp> -
| R | P uﬂp P o]
- -wfry - - -ofp> -
S Rw | R
= fr> - - -ofry - - —of> -
”LU Hif
ofr ofT

Let us now make a few observations about the above rules. While the sequentialization order
is non-deterministic in the sense that a given multifocused proof can have many different
sequentializations, each rule seqf and seq',i is deterministic: for a given LR bipole a, there
are unique S and ~ such that « seqR £ and « “seqk V- Dually, the rules par,_ and parR are
co-deterministic in the sense that for any given LR blpole « there are unique g and -~y such
that 8 ~park @ and y —parly, - On the other hand, in general the parallelization rules are
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not deterministic. Indeed, consider a rewriting diagram of the following form:

L _me,

| = T
.*“fp . c—nf - .*“fp .
”i L+R_Tp parE H R;}lq- parﬁ ”lL‘*‘R‘TP
=g S o TTmTe e
UT L_R"‘lT Wl L+ H O’T L_R'f‘lT
- —ofTy - = fr= - - —ofTy -

1|

.7.

(3.5)

Under the assumption that fr = g7 = h7 and 7f = mg = 7h, both rewrites in (3.5) are
valid instances of the parE rule. However, the two resulting bipoles will be distinct unless
g = h. The same argument shows that the par'ﬁ rule is not deterministic in general.

A sufficient condition for the parallelization rules to be deterministic is that the under-
lying base category is factorization preordered in the sense of Johnstone [22].

Definition 3.17. A category C is factorization preordered if for any diagram of compos-
able arrows of the form

! _9, k

if both fg = fh and gk = hk then necessarily ¢ = h. Equivalently, C is factorization
preordered just in case every commuting square has at most one diagonal filler:

Equivalently again, € is factorization preordered just in case the category of factorizations of
every arrow is a preorder, where the category of factorizations of an arrow w : A — B has
objects given by composable pairs of arrows A - X - B such that w = uv, and morphisms

(AiXﬁB)—%AiY—KB)givenbyarrowsh:X—>Ysuchthatuh=sandht=v.

Example 3.18. Any category that has only monic arrows or only epic arrows is factorization
preordered. In particular, every preorder category is factorization preordered, as is every
free category.

Let us call “FP condition” the hypothesis that the base category C of the free bifibration
A, : Bif(p) — C is factorization preordered.

Proposition 3.19. Under the FP condition, the parallelization rules parf and park are
deterministic, and the sequentialization rules seqﬁ and seq'F‘{ are co-deterministic.

Determinism is a special case of confluence, ensuring that a single application of a rule does
not induce a critical pair with itself. On the other hand, general confluence fails for the
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parallelization order, as one can exhibit a divergent critical pair from a stack of three bipoles.
For example, there is a critical pair whose apex is a stack of bipoles . R L,

afe
H .

| v |

- —fes -

| c |

c—=bfcy -
afc H R Tc afc ]
U N
| re fo P
C—fe - -
b/\ L_ ‘ ’ 2277 b/gd ) Z b/\ L_ R+ ld
‘bfe=bgc- b’l L H ‘bfd=bgd-
/ c—gd— - /
LR TC parR vp H
C—g— . L eT L H - —gd- -
el L°R" id ’ egd ’ € L~ H

(3.6)

as well as a symmetric critical pair whose apex is a stack of bipoles R . R. Here we clarify
that the condition that bf = g is necessary for the well-formedness of the stack in the middle
of (3.6), and implies the conditions bfc = &'gc and bfd = b’ gd ensuring well-formedness of
the stacks on the left and right.

Following the principles of Knuth—Bendix completion [24], we can obtain a confluent
system by adding two new rewriting rules to orient each of these critical pairs in one direction:

afc
—

: . e,

a| 'R Tc a Lt H a| TR ¢ H R c
Tt Vg L —af

b| L'R* ld T L H J L R" |d i ot H Rt |4
bfd=bgd: —— -bfe=bgc- “bfd=bgd’ afd=agd’

v Lt H graL | +r Tc H R o &R ai LR |
\-Ifgd%' PSP —bg > =g -
7o | Teele el el
i i Sl et

(3.7)

Here we annotate the rules with the side conditions that are necessary for applying them.
Observe that these conditions, which correspond to the equation appearing in the middle of
(3.6) as well as in the symmetric critical pair, imply that both sides of each rewrite rule are
well-formed.
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We call these “gravitation” rules because they o R e l? I
have the effect of pulling bi-focused bipoles down oot s S e -
towards the root of the derivation. The choice of : bfij;dld bfgra:q ’ bfﬁ:ch
moving downards towards the root is arbitrary, and o v v LR e
we could have taken the opposite convention to move s gy
them up. (In the multifocusing literature the deriva- : ML;MH eli’:};i"
tions generally have the shape of a tree rather than a H . o H s i
stack, and then the convention to move multifocusing cegy BRI
steps down towards the root is natural.) H LL‘ H i}l

It is clear that the gravitation rules are both o P
deterministic and co-deterministic, without making
any assumptions about the base category, since the park | gd = g ot (R
arrows a, b, ¢, d, e, f appear in the source and target
of each rule. _ - H

. afe, o 1
Theorem 3.20 (Local confluence). The rewrite sys- o R ; Tf% H
tem (par U gra) is locally confluent: if B, <— aupy — ; ;ij I, bretige
B, then there exists ~ym, such that By, —* Ym <* B, bfd—vgd _— | =
vlorR e & e
Proof sketch. The source of each rewrite rule must be C—a L | ® o

a stack of two bipoles. Thus all critical pairs (where
the source of two rewrite rules overlap) can be found T
by considering stacks of two or three bipoles.

The proof (detailed in Appendix A.2) enumer-
ates all possible critical pairs, and shows that each
of them can be resolved. There are two non-trivial
pairs (modulo symmetries), one with three bipoles
L R L which is exactly the critical pair (3.6) which is resolved by the rule gra,, and one
with three bipoles LR L R involving the rules gra, on one side and park on the other, which
is resolved by applying par'ﬁ on one side and grag on the other (see Figure 5). []

Figure 5: Resolution of a critical pair.

Lemma 3.21. par u gra s terminating: any valid rewriting sequence is finite.

Proof. We provide a non-negative measure for derivations that par U gra decreases strictly.
We measure each derivation by summing the weight of all bipoles. If a bipole is at
position ¢ starting from the bottom, the root of the derivation, we define its weight as ¢ if it
is a I or R bipole, and 2 x 4 if it is a LR bipole: the weight of LR is the weight of I plus
the weight of R.
Consider a gra rewrite (gra, for example), which is of the following shape annotated
with vertical positions:

p p
LR (i+1) L (i+1)
L () e LR (i)

The starting positions of the sub-stacks a and 8 do not matter in this rewrite as their
weight is unchanged. The weight of the middle of the derivation decreases strictly from
2x(t+1)4+ito(i+1)+2xi.
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Consider a par rewrite (park for example), it is of the shape

B (i+2)
L (i+1) B (i+1)
R (i) Trark LR (i)

The weight of « is unchanged by the rewrite. The combined weight of the I and R
bipoles decreases from i + (i + 1) to 2 x i. The weight of 5 also decreases strictly as all its
bipoles are shifted one position down. []

From local confluence and termination, we derive our main canonicity theorem.

Theorem 3.22. Under the FP condition, any multifocused derivation o, admits a unique
normal form for par U gra, which we write NF(cu,). Moreover, for any pair of derivations
Qm and By, we have

Qm ~seq Pm — NF () = NF(5,).

3.6. Maximal multifocusing. We finally introduce a restriction of the multifocused sequent
calculus that precisely captures the normal forms for par U gra. Under the FP condition,
proofs in this restricted calculus give canonical representatives for the arrows of Bif(p).

An intuition is that, when building the proof from the root to the axioms, we only need
information about the last invertible rule that was applied to conclude a bipole. In the
immediately following bipole, we can use this information to check that the non-invertible
rule does not introduce a par or gra redex.

Suppose for example that the last invertible rule was Lzt as part of a IL bipole with
intermediate base arrow f, and suppose that—assuming 7 f is of the form g7 for some g—we
want to continue the proof by applying R7" as part of a R bipole, as depicted on the left:

g...

RN |
L
I
. L) . |
|
I O
L S
gr=nf I na
’rl H : A
I

This creates a parE redex exactly when there is an arrow h such that ¢ = 7h and f = hT,
that is when the square to the right has a diagonal filler, corresponding to a morphism
h: (m, f) — (g,7) in the category of factorizations of the composite arrow 7 f = g7.

If instead we try to extend the L bipole with a LR bipole, we should check that we
don’t create a gra redex. Such an extension takes the shape on the left:



THE FREE BIFIBRATION ON A FUNCTOR 55

|
|
|
. L) . |
A ‘ a.g
- lT | AN
| A
—_— | T h T
ogr=nf [ l/‘ l
T ’ | B
~ I f
C—_— . |
L
|
|

This forms a gra redex exactly when f is of the form hr for some h such that 7h = og,
that is when the square to the right has a diagonal filler corresponding to a morphism
h:(m, f) — (0g,7) in the category of factorizations of the composite arrow 7w f = ogr.

Notice that in both cases, in order to decide whether or not there is a redex we need to
know the intermediate arrow f of the IL bipole. By keeping track of the last rule applied as
well as the intermediate arrow, we can thus rule out the creation of any par or gra redexes.

In Figure 6 we present a refinement of the multifocused sequent calculus that we call
maximally multifocused, in which judgments S 2(} T are annotated with a state g that can
be either a pre-inversion state q = g; or a pre-focus state ¢ = gs. The rules are best read
operationally as goal transformers from conclusion to premise, following the conventions of
proof search. The idea is that a pre-inversion state forces an inversion rule to be applied
in the next step (recall that we allow 7 and p to be empty), while a pre-focus state forces
one of the focusing rules or an atomic rule to be applied. After applying a focusing rule,
the state transitions to a pre-inversion state of the form L, R, or 1;, indicating the start of
a L-, R-, or LR-bipole respectively. The subsequent inversion rule supplements the state
with additional information about the arrows involved, which is then used at the start of
the next bipole to rule out any par or gra redices: this is done with the side conditions for
the focusing rules, which are indicated to the side in a smaller font in Figure 6.

For example, suppose we are in a “left-locked” state ¢f = L[, f]. That means that in
the current stage of proof search, we just performed a left-focus rule to initiate a LL-bipole
followed by a Lz rule to terminate it. We now have the following choices are available:

e any left-focus rule can be applied freely;
e a right-focus rule RT" beginning a R bipole with intermediate arrow g can only be applied
if (m, f) € (g, 7) in the factorization order;
e a bi-focus rule Lo~ R7" beginning a LR bipole with intermediate arrow ¢ can only be
applied if (7, f) € (0g,7) in the factorization order.
Dual restrictions apply in a “right-locked” state ¢r = R[f, p].
Our use of lock states is inspired by formulations of focusing and maximal multifocusing

using tag annotations by Uustalu, Veltri, and Wan [50, 51].
By the preceding analysis we immediately have the following result.

Proposition 3.23. Mazximally multifocused proofs of unlocked judgments S :in T are in
one-to-one correspondence with (par U gra)-normal multifocused proofs of S =5 T.

Proof. The side conditions on the rules Lo~ and R7" ensure that they never create a par
redex, while the side condition on the Lo~ R7" rule ensures that it never creates a gra redex.
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pre-inversion states ¢; == 1;|L|R _ o
pre-focus states ¢f == L¢|L[x, f]]|R[f,p] Lilm, ] = Le = Lilf, ]
0: X—->YeD p(é)zfé
XLy
f
, 1 ,
N a[m.f1 p N=Lp Nq.[fvp] p
nf Lt WIP L7T+Rp7 Ip Rp
7r+N%>P 7T+N:f'>p*P NZ&Z ;P
P=qQ N=M
ar = R[f,p] = (0,9) € (f,p) # Lo~ g = L[m, f1= (m, f) € (9,7) qu Rr*
o P=Q N=71"M
og a7
1
P=— N
g = Lr, f1 = (m, f) £ (09,7) J Lo~ R+
g = R[f, p] = (0, 97) £ (£, p) O'7P$7'+N
ogT

where (a,b) < (¢,d) := Je.c = ae A b = ed.

Figure 6: Maximally multifocused derivations (factorization preordered base category)

Conversely, given a multifocused proof with no par or gra redex, we can always annotate it
with states following the locking discpline of Figure 6 in a uniquely determined way, starting
from an unlocked state ¢; = 1;. ]

Combining Proposition 3.23 with Theorem 3.22 then implies the following.

Corollary 3.24. Under the FP condition, there is a one-to-one correspondence between
arrows « : S — T in Bif(p) such that Ap(a) = f and mazimally multifocused proofs of

S :>]%i T.

This correspondence means that if the base category € is factorization preordered then
maximally multifocused proofs give an equation-free inductive definition of arrows of Bif(p).
An important special case is when € = FG is the free category over a graph G. In that
case, the factorization order reduces to a linear order (a path of length n has n + 1 linearly
ordered factorizations) and the calculus can be simplified somewhat: states only need to
keep track of the type of the last bipole and the intermediate arrow f (but not 7 or p), and
the factorization order test can be replaced by a single prefix or suffix test (since for any
two factorizations of a word w = uv = u/v’, u is a prefix of «’ just in case v’ is a suffix of v).

On the other hand, in both the free case and general FP case, our definition of cut-
elimination or horizontal composition of two multifocused proofs in Section 3.4.5 does not
preserve maximality—to obtain a maximal multifocused proof one needs to renormalize the
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result of the composition. We leave open the question of whether there is a more direct
definition of horizontal composition on maximal derivations.

3.7. Decidability and enumeration. In studying their free adjoint construction, Dawson,
Paré, and Pronk [13] established the surprising result that, in general, equality of 2-cells in
I15(€) is undecidable—or more precisely that there is no decision procedure for determining
whether two representatives of 2-cells (what they call “fences”) denote the same 2-cell. They
gave two proofs of this result, first by exhibiting a very concrete reduction from the halting
problem for 2-register machines, and second by giving a somewhat simpler and more abstract
reduction from the undecidable problem of determining whether two vertices of an infinite
(but locally finite) bipartite graph are connected by a path. Their latter proof translates
cleanly to an analogous undecidability result for sequentialization equivalence.

Definition 3.25. We say that a category € has locally finite factorizations just in case
every commuting square in € has at most finitely many diagonal fillers, or equivalently if
the category of factorizations of every arrow is locally finite (i.e., has finite homsets).

By a locally finite bipartite graph, we mean a span of sets V 2 E B W such that the
fibers of p; and po are finite. (Every edge e € E connects a vertex v € V to a vertex w e W,
where v = p;(e) and w = pa(e). So local finiteness says that every vertex of either class is
involved in only finitely many edges, i.e., has finite degree.) To any locally finite bipartite
graph GG, we can associate a category Cq with locally finite factorizations, defined as the
subcategory of Set generated by the five sets

o, 1, Vv, W, FE
(where 0 and 1 are respectively the empty set and singleton set), the projection functions
| D 4
describing the incidence relation of G, the constant functions
1 —=V 4 1 4> F

associated to every vertex v € V or w e W or edge e € F, and finally the unique functions
from the empty set

025 X
for X € {1,V,W,E}. To see that local finiteness of G implies that Cs has locally finite
factorizations, first note that the only non-degenerate commuting squares are of the form

0, F 022, F
1 ——V 1 —— W

and then observe that diagonal fillers for these squares correspond to edges incident to the
respective vertices:

022, FE 0, F
21 i

all /e/ lpl all /e/ P2

1%V 1/T>W



58 B. CLARKE, G. SCHERER, AND N. ZEILBERGER

Now, to any vertex or edge = of G let us associate a stack a, of the zigzag double category
Z(Cq), as follows:

02>V 025V
ol v | & I
1 —vs V 02>V 0—ars E
a1T - H all TR |p H Rt P2
0—av>V 1l —e—=> F 0-aws> W
R B N
0—ae> F 0 -aws> W 1l —ws W
| Rl ol v
0-aw+ W 0-aws> W

Observe that a. sequentializes to o, and o, that is, o, <—seq e —seq Qw, just in case

v =pi(e) and w = pa(e).

Theorem 3.26 (cf. Theorems 2 and 3 of Dawson, Paré, and Pronk [13]). There is a

category C with locally finite factorizations for which the following equivalent problems are

both undecidable:

e given two stacks of double cells in Z(C), determine whether they vertically compose to the
same double cell;

e given two proofs in the bifibrational calculus generated by p = ide, determine whether they
are permutation equivalent.

Proof. We take € = Cg,, where G is a bipartite version of the configuration graph of
some universal Turing machine M. Without loss of generality we will assume that M is
deterministic and has a unique halting configuration 7y,5;. Let us write Confjy; for the
configuration space of M, that is, the set of tuples (¢, u,v) of a state ¢ and finite strings
u and v over the working alphabet denoting the contents of the tape to the left and right
of the head. We define G by taking V = Confys x {0} and W = Confps x {1} to be two
disjoint copies of the configuration space, and £ € V x W as the union

E ={((0,0),(1,1)) | 0 — 7 is a valid transition of M }
U {((0,0),(0,1)) | 0 € Confps }
By the preceding observation, it is clear that any directed chain of configurations
01— 09 — 03 — ...
induces a corresponding chain of sequentialization equivalences:
®(51,0) ~seq X(o3,1) ~seq X(52,0) ~seq X(o3,1) ~seq X(53,0) “seq

Conversely, the assumption that M is deterministic and has a unique halting state ensures
that any chain of sequentialization equivalences a(;.0) ~seq *** ~seq Q(r.;,1) COTTEsponds to
a halting execution 0 —* 7p,;. We have thus reduced the halting problem for M to deciding
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sequentialization equivalence a4 0) ~seq (r,,;,1), OF €quivalently permutation equivalence
A(0,0) ~ X(rpare,1)- u

Dawson, Paré, and Pronk proved decidability of (fence equivalence for) the IT3(C)
construction separately in the cases that € is locally finite or factorization preordered. We
now prove analogues of these two results for deciding equality of morphisms in Bif(p), or
more precisely for deciding whether two proofs of the same judgment represent the same
morphism. The first is already a consequence of the results of Section 1, while the second is
a corollary of our normal form theorem.

Theorem 3.27 (cf. Propositions 2 and 3 of Dawson, Paré, and Pronk [13]). Letp: D — €
and suppose that C satisfies either of the following conditions:

(1) C is locally finite, or
(2) C is factorization preordered;

then for any two proofs ay,an : S =5 T of the bifibrational calculus generated by p, it is
decidable whether oy ~ ao.

Proof. (1) Two proofs are equivalent just in case there is some sequence of permutations
transforming one to the other. Any such permutation leaves invariant the length of
the proof, the choice of terminating axiom ¢ : X — Y in D, and the selection of left
and right rules applied, merely changing the order of the rules and the intermediate
base arrows that annotate the derivation. Since € is locally finite, there are therefore
only finitely many proofs permutation equivalent to any given proof, and we can reduce
a1 ~ ag to a finite test ag € [aq].

(2) This is a corollary of our normal theorem, Theorem 3.22, which states that each
multifocused proof has a unique maximal normal form, under the FP condition. We
can thus decide whether two proofs denote the same morphism of Bif(p) simply by
computing their normal forms and checking that these are equal.

[

Remark 3.28. Technically, we need C to satisfy computable versions of either local finiteness
or factorization preorder to get a decision procedure. For instance, we need to be able to
effectively enumerate the finite homset C(A, B) between any pair of objects. Or, for any
given square, we need to be able to decide whether that square is empty or else compute a
filler. We also need the equality of morphisms in € and D to be decidable to check that two
proofs are identical. We omit these precisions from the statement of the theorem, since it is
clear from context that the conditions should be interpreted constructively.

Besides entailing decidability of the word problem, the normal form theorem has the
equally important application of allowing us to enumerate homsets of free bifibrations
without duplicates, assuming the FP condition. We are most interested in the situation that
Bif (p) is relatively locally finite in the following sense.

We say that a category D equipped with a functor p : D — C is relatively locally
finite (relative to p) if the relative homsets over f

De(X,)Y):={6]0: X =>Y,p(0)=f}
are finite, for every arrow f : A — B of C and pair of objects X and Y of D lying above A

and B respectively. (Thus a category € is locally finite iff the unique functor !¢ : € — 1 is
relatively locally finite.)
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Theorem 3.29. Let p: D — C and suppose C satisfies the FP condition. If D is relatively
locally finite (relative to p) and C has locally finite slices and coslices, then Bif (p) is relatively
locally finite (relative to Ap). In particular, the fiber category Bif(p)a of every object A e C
1s locally finite.

Proof. Suppose given an arrow f : A — B of € and a pair of bifibrational formulas
S Aand T = B. By Corollary 3.24, we can enumerate canonical representatives of arrows
a € Bif(p) ¢ (S, T') using the sequent calculus of Figure 6 to search for maximally multifocused

proofs of S = ]% " T. There are only three potential sources of nondeterministism:

(1) the choice of whether to initiate a L, R, or LR bipole when proving a neutral sequent;
(2) the choice of an arrow g in the premise of a left- /right- /bi-focus rule;
(3) the choice of an axiom ¢ : X — Y € D to terminate the proof.

But each of these choice points are finite branching:

(1) at most three rules to try (some may be forbidden by the lock state gf or if one side of
the sequent is atomic);

(2) finite by the assumption that € has locally finite slice and coslice categories (for example,
to derive a sequent of the form o~ P =>Z (@ using the Lo~ rule, we must pick an arrow
g such that h = og; observe that such an arrow corresponds to a morphism ¢ — h in
the coslice category A/C, where A = domo = dom h);

(3) finite by the assumption that D is relatively locally finite.

We conclude that there are only finitely many maximally multifocused proofs of any given
judgment, and hence that the relative homsets are finite. In particular, for every object
A € C, the homset of the fiber category Bif(p)4, corresponding to the relative homset over
id 4, is finite. L]

Corollary 3.30. Under the assumptions of Theorem 3.29, logical equivalence of bifibrational
formulas is decidable.

Proof. Recall that by definition, two formulas Sy, S, = A are logically equivalent if there
exist derivations « : S1 =iq, S2 and 8 : So =iq, S1 whose compositions are permutation
equivalent to identities (Defn. 1.19), or equivalently just in case they are isomorphic in the
fiber category Bif(p)a (Prop. 1.20). It suffices to enumerate canonical representatives of all
such derivations « and S using Theorem 3.29, compute their cuts - 8 and S - «, and decide
whether o - f ~ idg, and - a ~ idg, using Theorem 3.27. ]

As already remarked, free categories satisfy the FP condition because their factorization
categories are linear orders. Moreover, although free categories FG are not locally finite
unless the underlying graph G is acyclic, their slices and coslices are posetal and hence
trivially locally finite. Thus the enumeration and decision procedures described above are
applicable (and even become slightly simpler since the sequent calculus of Figure 6 can be
simplified a bit, as remarked at the end of Section 3.6).

Finally, Theorem 3.29 can clearly be generalized to derive any infinite cardinality bound
on the relative homsets of Bif(p), assuming the same bound on the relative homsets of D
and the homsets of the slices and coslices of €. We can also use the sequent calculus to
effectively enumerate the (potentially infinite) relative homsets of Bif(p), given procedures
for doing the same for D and for the slices and coslices of C.
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4. FREE (P, N)-FIBRATIONS

As previously mentioned, Dawson, Paré, and Pronk’s II5(€) construction may be seen as a
weaker version of the free groupoid construction, which turns a category into a groupoid by
freely adding an inverse to every arrow. More often, one only wants to add formal inverses
to a class of arrows W), a process known as localization (see, e.g., Borceaux [9, Ch.5]), which
freely builds a category C[W~1] equipped with a functor € — C[W~!] sending every arrow
f € W to an isomorphism. DPP [12, §4.1] discuss how to adapt their construction of ITy(C)
to define a 2-category C[W*] in which every arrow f € W is freely equipped with a right
adjoint. In this section we quickly explain how our construction of the free bifibration on a
functor p : D — € may be similarly adapted when the operations of pushing and pulling are
restricted to certain classes of arrows of C.

Definition 4.1. Let P < Cand N < € be two subsets of arrows (not necessarily subcategories)
of C. We say that a functor 7 : € — C is a (P, N)-fibration if it has +-cartesian liftings of
all arrows in P and —-cartesian liftings of all arrows in N.

As special cases, a (¢, C)-fibration is a Grothendieck fibration in the ordinary sense, a
(€, &)-fibration is an opfibration, and a (C, C)-fibration is a bifibration.

A case of particular interest is when (P, N) constitute a factorization system for the
base category. Such (P, N)-fibrations relative to a factorization system have been studied
and termed ambifibrations by Joachim Kock and André Joyal. One interesting property of
ambifibrations, noted by Kock [27], is that they give rise to ternary factorization systems in
which every arrow of the total category factors as a +-cartesian arrow, followed by an arrow
lying over an identity, followed by a —-cartesian arrow:

U

TS ——m T
€ e\a/ﬁm

~

S
es

: A / B

m. 74\[

We will consider an example of a free ambifibration in Section 5.
Unless otherwise stated we do not assume anything about P and N in this section. We
write A, 9 : Bif(p, P, N) — € for the free (P, N)-fibration on a functor p : D — C.

Sequent calculus. The presentation of the free bifibration that we gave via the sequent
calculus in Section 1 adapts directly to a presentation of the free (P, N)-bifibration. For this
one simply has to restrict the formation rules on bifibrational formulas:
Sc A f:A—>Be? g:B—->CeN TcC
ffSeB g TcB

Otherwise, everything remains the same: the definition of the inference rules, permutation
equivalence, cut-elimination, et cetera. This presentation makes clear that Bif(p, P,N) is a
full subcategory of Bif(p).
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The zigzag double category. In Section 2 we defined the double category of zigzags Z(C)
by first constructing the free bifibration on the identity functor ide. We can similarly define
a double category of restricted zigzags Z(C,P,N), whose vertical arrows are zigzags moving
positively along arrows in P and negatively along arrows in N. In particular, we can recover
DPP’s C[W*] in this way as the vertical 2-category of Z(C, C,'W).

Weak focusing. The syntax of weakly focused derivations given in Section 3.3 works just
as well for (P, N)-fibrations, although the proof of correctness based on the equivalence
Bif(p) ~ saBif(p) has to be slightly adapted. The equivalence with strictly alternating
formulas relied on the pseudofunctoriality laws (go f)* S=g" ffSand (fg) T=f g T,
whereas P and N are not necessarily closed under composition. However, Theorem 3.2 can
be directly adapted to prove the following.

Proposition 4.2. If P and N are closed under binary composition, then Bif(p, P, N) ~
saBif(p, P, N).

The restrictions on P and N are not problematic, because we can always close them under
finite compositions and obtain an equivalent free (P, N)-fibration. Given a subset of arrows
W < €, let us write W* for the subcategory of C generated by adding identity arows
id4 and idg for every f : A — B € W, and by closing under binary composition. The
pseudofunctoriality laws immediately imply the following.

Proposition 4.3. Bif(p, P, N) ~ Bif (p, P*, N*).

Corollary 4.4. If C = FG/~ is freely generated by some graph G modulo some equations,
then Bif(p) ~ Bif(p, G, G).

Maximal multifocusing. Finally, the results of Sections 3.5-3.7 provided a strong notion
of normal form for free bifibrations as well as decidability results in the case that the
base category is factorization preordered (Definition 3.17). One benefit of considering free
(P, N)-fibrations is that we can relax this requirement to the a priori weaker condition that
C is both P-factorization preordered and N-factorization preordered.

Definition 4.5. Let W < € be a subset of arrows of a category €. We say that C is
W-factorization preordered (or W-FP) if for any diagram of the form

g
eW
W kW,

h

if both fg = fh and gk = hk then necessarily ¢ = h. Equivalently, € is factorization
preordered just in case every commuting square of the following form has at most one
diagonal filler:

R N

A
fewl g=h lkeW

Ty

Proposition 4.6. Every category C is both Cepi-FP and Cmono-FP, where Cepi and Cmono
consist respectively of the epic arrows and the monic arrows of C.

The analysis of Sections 3.5-3.7 carries over and we obtain the following.



THE FREE BIFIBRATION ON A FUNCTOR 63

Theorem 4.7. If C is both P-FP and N-FP, then arrows of Bif(p,P,N) are canonically
represented by mazximally multifocused derivations, and permutation equivalence is decidable.
If moreover D is relatively locally finite and C has locally finite slices and coslices, then
Bif (p, P, N) is relatively locally finite and logical equivalence is decidable.

Remark 4.8. As mentioned, fibrations and opfibrations arise as particular cases of (P, N)-
fibration, taking P = ¥, N = € for fibrations and P = €, N = & for opfibrations. Even if C
is not factorization preordered, strongly focused derivations do provide normal forms for the
arrows of Bif(p, &, C) or Bif(p, C, &), for the simple reason that there are no LR-bipoles
and so sequentialization equivalence reduces to discrete equality. The usual constructions of
the free fibration and free opfibration as comma categories may be recovered in this way if
one restricts to strictly alternating formulas of depth 1, avoiding formulas of depth 0 so as
to obtain a split fibration (cf. Remark 3.4).

5. THE COMBINATORICS OF FREE BIFIBRATIONS AND AMBIFIBRATIONS

We conclude with a deeper analysis of the specific examples of free bifibrations and ambi-
fibrations that were mentioned in the Introduction. In all of these examples, some rich
combinatorial structure emerges out of very simple generating data, and the exploration of
this structure is facilitated by the bifibrational calculus.

5.1. Reconstructing the simplex category. Recall that we write A for the category of
finite ordinals and order-preserving maps, which is sometimes referred to as the augmented
simplex category to emphasize that it includes the empty ordinal 0, but which we will simply
call the simplex category. We write A for the category of non-empty finite ordinals and
order-and-least-element preserving maps. We write L : A — A for the functor sending an
ordinal n to a non-empty ordinal n’ by adding a L element, and an order-preserving map
6 : m — n to the order-and-least-element-preserving map ¢’ : m’ — n’ defined by 6'(L) = L
and 0'(z) = 0(x) for x > L. This functor has a right adjoint given by the forgetful functor
R: A, — A, which interprets n” as 1+n and forgets that a map is L-preserving.

Proposition 5.1. Let F': 2 — Adj and pa : 1 — 2 be the functors shown below:

L
T
FO—A FI=A, Ff=A_ 1 A,
\\_/
R
1 *
PQJ/
2 0— 51

Then the unique morphism of bifibrations Bif (p2) — §, F' sending the atomic formula % to
the empty ordinal 0 is an equivalence of categories. In particular, A is equivalent to Bif(p2)o.

Proposition 5.1 is a corollary of Theorem 5.3 below, so we do not give a detailed proof here,
but we sketch the correspondence. Under the equivalence, each ordinal n in A is interpreted
as the bifibrational formula

mi=f ft.. f ffxc0
—_—

n times
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while each non-empty ordinal n’ in A is interpreted as the bifibrational formula

=TTl
—_—

n times

Conversely, since = is the only atom and f is the only non-identity arrow, every bifibrational
formula on p;, is equivalent to one of these two forms. To be precise, we note that pushing or
pulling along an identity arrow idy or id; is also possible, but logically equivalent to doing
nothing (Prop. 1.21)—hence why we only state an equivalence {, F' = Bif(p2) rather than
an isomorphism of categories. Clearly we obtain an isomorphism if we restrict to the full
subcategory Bif(pa, f, f) < Bif(pz).

Observe that ordinal formulas 'n* and 'n’* are strictly alternating. The sequent calculus
of Figure 6 becomes particularly simple when restricted to such ordinal formulas: since
there are no non-trivial factorizations in the base category, the bi-focusing and bi-inversion
rules can be removed (they are impossible to apply), as can the lock conditions on the left-
and right-focusing rules (they are always validated). Thus any morphism in Bif(p,) may be
represented canonically as a strongly monofocused derivation, which in turn is essentially
just a shuffle of I and R bipoles.

As an illustration, the three order-preserving maps 2 — 2 depicted on the left correspond
to the following three derivations of f~ f* f~ f* « =g, f~ f* f~ fT * depicted on the right
(drawn as stacks with overlaid string diagrams):

S

™

[ )

[ )
OO —— O —— O P R4 T— O P R g— O —— O
[ I d s B T T T S PP e o)
O=——O R O ——O=——O RO ——=0O

ol sre=e—pr=—rd ol sy rn=e—r=—rd o

Vel R sl loed el

otlyvrm—mrr e e —=—— ¢ — ot ¢l 0o

C——O ¢ O R O — O =— O —— O

The graphical correspondence should be suggestive. In general, any morphism 'm' — 'n’ in
Bif (p2)o can be canonically represented as a derivation that opens (reading from the bottom)
with a R~ rule, followed by an arbitrary shuffle of m IL bipoles with n — 1 R bipoles, followed
by a closing R" rule. Since there are (mtg_l) such shuffles, we thus derive the well-known
formula for the number of order-preserving maps.

Corollary 5.2. There are % order-preserving maps m — n.
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5.2. Categories of trees and walks. A natural generalization of the previous example is
obtained by considering the free bifibration generated by the functor p,, illustrated below
which maps the point to the initial object of w, the totally ordered set of natural numbers
considered as a category.

1 *
p{
w ) LI (S S RN

As we observed in the introduction, up to isomorphism the objects of Bif(p,)o may be
read as Dyck words, which are in bijection with rooted plane trees, that is, trees embedded
in the plane with one vertex marked as the root, considered up to planar isotopy. We draw
such trees growing upwards from the root, as depicted on the left:

0\/' o

IS Z

To encode a plane tree by a Dyck word, a canonical procedure is to traverse the tree (say)
from right to left starting from the root, recording a +1 every time you move up towards a
child, and a —1 every time you move down back to a parent. We represent the beginning of
this traversal, visually, on the right. (We will use these same colors below to visualize the
traversal order.)

The corresponding bifibrational formula may be read off directly:

VAN A A A A A A A A A

Here to keep the notation simple we have elided the indices from the f;’s, which are uniquely
determined. Such a word may also be interpreted as a walk on the upper plane, starting
at the z-axis (at the point marked = below), constantly moving up or down while moving
leftwards and eventually terminating back at the x-axis:

° . .\o/.
/ N

Observe that all of the information about the walk is contained in its peaks and valleys, and
a tree may also therefore be represented more concisely as a strictly alternating zigzag:

0 3 1 2 0 1 0 — 2 <+—<+—0

or again as a formula in strictly alternating syntax: f=3 f¥2 f=1 f#2 f=1 pH1 =2 p+2.
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Next we recall how plane trees admit an alternative representation as functors. (This
idea goes back at least to Joyal [23], but may be earlier folklore.) Define the height of a
vertex as its distance from the root, and the height of a tree as the maximum height of any
of its vertices. Let [k] = k+1 be the linear order {0 < --- < k} seen as a posetal category.
It is clear from the definitions that any rooted plane tree of height £ may be represented
by a functor T : [k]”” — A such that T'(0) = 1: each linearly ordered set T'(i) defines the
vertices of height 7, and the parents of the non-root vertices are specified by the functions
T(i+1) — T(i), which must be order-preserving by the constraints of planarity. For instance,
the height-3 tree given in the example above corresponds to the functor T : [3] — A depicted
below.

T(3)=1={0} 0

2

0 1
N/
T(1)=3={0<1<2} 0 1 2
| \0/

T(0)=1={0}

T(2)=3={0<1<2}

This tree also has width 3, defined as the maximum number of vertices at any given height.
More generally, a tree of unbounded height and width may be represented as a functor
T : w° — A such that T(0) = 1. In other words, the only requirement is that 7" sends the
initial object of w to the terminal object of A. Finiteness is ensured if we moreover ask that
there is some natural number k such that T'(k + 1) = 0 (and hence T'(j) = 0 for all j > k).

We define PTree as the full subcategory of [w°, A] spanned by the finite rooted plane
trees, that is, the category whose objects are functors 7' : w’? — A such that 7'(0) = 1 and
T(k+ 1) = 0 for some k, and all natural transformations between them. For example, below
we depict two different morphisms of plane trees S — T between the same pair of trees, using
different color lines to indicate the mappings S(k) — T'(k) of the natural transformations at
each height k.

S(3)=0— T(3) =1

0
S@2)=35T@2) =3 0= 1—a2— (£41\Q
\ N —_/ o)

S(1)=3 — T(1) =3 o= 1 2
\0/

0 1
N
S0)=1—T(00)=1 0
Readers familiar with the “topos of trees” [w?, Set] may recognize that PTree is defined
in essentially the same way, but replacing Set by A to reflect planarity, and taking a full
subcategory of [w?, A] in order to restrict to finite trees rather than potentially infinite
forests. The combination of order-preservation and naturality imposes strong constraints

N N
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on the shape of plane tree morphisms. The reader may check that there are exactly 11
morphisms S — T between the trees S and 1" shown above, including the two in (5.1).

We should note that PTree is strongly related to but different from a category of
plane trees defined by Joyal [23]. Joyal considered a more liberal notion of morphism
S — T between plane trees encoded in the same way as functors S, T : w°? — A. Instead of
considering natural transformations in [w?, A], he took more general natural transformations
between the underlying functors in [w??, 8et] so long as they respect the linear orders on
the fibers of the maps S(n + 1) — S(n). (In other words, respect the ordering of siblings,
but not necessarily of cousins.) Every morphism in PTree is a morphism in Joyal’s category
of plane trees (i.e., it is a wide subcategory), but the converse is not true as the following
example illustrates:

S2)=2—>T2)=2 0 1 0 1
I N/
S1)=2—-T1)=1 0 1 0 (5:2)
L N/
S(0)=1— T(0) =1 0 0

Joyal used this more relaxed definition of tree morphism in order to axiomatize a notion
of w-category, and his category of trees, which is equivalent to the category 2 studied by
Batanin and Street [4], satisfies some important universal properties (see Theorems 1 and 2
of [4]). Despite being a non-full subcategory of the Joyal-Batanin-Street category of trees,
the category of plane trees PTree defined above as a full subcategory of [w°P, A] also seems
to us very natural.

Let us now prove that PTree corresponds to the fiber over 0 of the free bifibration
generated by p,,. In order to prove this we give a more general characterization of the fiber
categories Bif(p, )y, for arbitrary k > 0. We write PTree| () for the category whose objects
are rooted plane trees with a marked vertex of height k on their leftmost branch, and whose
arrows are morphisms of plane trees preserving the mark. It is clear that PTree =~ PTree (q),
since every tree morphism S — T sends the root of S to the root of T, and also that every
tree in PTree| ;) must have height at least k. But not every morphism between trees of
height > k is a morphism in PTree; (). For example, one of the two tree morphisms S — T
depicted in (5.1) lifts to a morphism in PTree| (5) (the one in blue), but the other (in red)
only lifts to PTree ).

Objects of Bif(p,)r may be interpreted as left-marked trees: the idea is that a bifibra-
tional formula in S = k, corresponding to a walk that starts at height 0 and ends at height k,
may be read as describing a walk from right to left along the tree that stops at the marked
node. Under this correspondence, extending a walk by an up-step k — k + 1 corresponds to
growing a fresh marked leaf as a left child of the marked node, while extending a walk by a
down-step k + 1 — k corresponds to moving the marked node down towards the root. We
call these respective operations Lj and Rj, and illustrate them below on an example for the
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case k = 2:
(@] [ ] [ ] [ ]
N \ \
[ ] [ ] [ ] L2 O [ ] [ ] R2 [ ] [ ] [ ]
N/ \ — N/ \ — N/ \

[ ] L] [ ] [ ] [ ] [ ]
~_ !/ ~_ !/ ~_ !/
[} [}
It is easy to see that Lj and Ry extend to functors defining a family of adjunctions

Ly

/\
PTreeL(k) 1 PTreeL(kH)

\/

Ry
between the categories of left-marked plane trees.

Theorem 5.3. Let F': w — Adj be the functor sending k to PTree, ) and each arrow
fx : k> k+ 1 to the adjunction Ly - Ry defined above. Let p, : 1 — w be the functor
mapping * to 0. Then the unique morphism of bifibrations Bif(p,,) — SwF sending the
atomic formula % to the one-vertex tree o is an equivalence of categories. In particular, PTree
is equivalent to Bif (py,)o.

Proof. Since wp(e) = 0 = p,(*), the universal property of the free bifibration determines a
unique morphism of bifibrations [-], : Bif(p,) — §_ F mapping * to e.

On objects, [—], interprets a bifibrational formula T" as the left-marked tree [T,
encoded by the corresponding walk. This mapping is surjective since every such tree is
described by a unique walk. (It is many-to-one, since many formulas isomorphic by the
pseudofunctoriality laws represent the same walk.)

As a morphism of bifibrations, the mapping on arrows is determined by its action on the
homsets of the fiber categories. We now give an explicit description of a family of bijections

(Vi)s,r 2 Bif (pu)r (S, T) —> PTree ) ([S], . [T1.,)

mapping zigzag morphisms to plane tree morphisms. Since these bijections are natural in S
and T, they uniquely determine [—], : Bif(p,) — §_ F as a morphism of bifibrations. We
conclude that [—], is both surjective on objects and fully faithful, hence an equivalence.
To define 9, we rely on an inductive characterization of plane tree morphisms that
we show can be reflected in both PTree, () and Bif(p,)x. Let us begin by illustrating this
bijection in the case k = 0, before explaining how to generalize it to arbitrary k > 0.

Bijection for the case k = 0. A plane tree can be described inductively as a root node
with a list of plane trees as children. In other words, a tree is built by taking a (possibly
empty) forest of trees, and attaching the root of each tree in the forest to a new root vertex.
The following grammar summarizes this inductive structure, where T ranges over trees and
® over forests:

T:=ed Q= |T,9 (5.3)

Order-preserving morphisms of plane trees can similarly be defined inductively. We find it
convenient to introduce two auxiliary judgments ® — T and ®" — ®, describing forest-to-tree
morphisms and forest-to-forest morphisms, respectively; we then consider tree morphisms as
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a special case of forest-to-tree morphisms with a singleton forest as input. The two kinds of
morphisms can be built inductively using the following rules:

P> -1 - O, >T,
oD, ., 0D — e Lo, ®, > Th,...,T, (5.4)

The forest-to-tree rule (on the left) expresses that the root nodes of the input forest are
necessarily mapped to the unique root of the output tree, so it suffices to provide a forest-
to-forest morphism at height 1. The forest-to-forest rule (on the right) expresses that a
morphism into a forest with n trees is determined by an ordered partition of the input forest
into n subforests together with a list of forest-to-tree morphisms.

It is clear that morphisms in PTree may be constructed inductively in this way—to see
this, it is helpful to begin by observing that there is an isomorphism

T(—)~»T(1+-)
RS

PTree ~ PForest

P—ed
where PForest is the category of (finite rooted) plane forests, that is, the full subcategory
of [w°, A] spanned by the functors ® : w?? — A that eventually vanish ®(k) = 0 (with
no constraint on ®(0)). Indeed, any natural transformation 6 : S — T in PTree is uniquely
determined at height 0 (since S(0) = T'(0) = 1) and induces a natural transformation
0 : &g — P in PForest between the underlying forests, where S = e®g and T = ePr.
The height 0 component of such a natural transformation 6} : ®5(0) — ®7(0) determines

an ordered partition of the roots of &g into n components, where & = T1, .. T By
naturality of €, this extends to an ordered partition of the forest itself ®g = e, @
together with a hst of natural transformations 6y : ®; — T1,...,0, : ®,, — T,,.

Let us now explain how to similarly decompose morphisms in Bif(p,)o, illustrating
with an example. Consider the maximally multifocused proof below, which we will see
corresponds to the blue morphism in (5.1):

(=}
|/

fe=)

>—-<;~

I ok 7

W v m——o

C+=0
PR

;|

A
45— 0

4d

We have rotated the proof 90 degrees clockwise to better fit on the page. It should be read as
a morphism S — T from the zigzag S at the top to the zigzag T at the bottom. Remember
that each zigzag describes a walk along the contour of a tree.

The idea is to begin by splitting the proof along 0 — 0 boundaries:

c_o*n\:u—o*w—w;c=c o=——oc=——0o Ce—— o N R SN O e——O
cllbwem—w——weL L i Lo o—t s+t —o R nd e e N e N e =]

This splits the proof into exactly n components, where T' = o(T1,...,T,). Next, in each of
these components, we “gray out” the chords that are incident to 0:

OO0 — NG O — I O =——0O o——oc=—=0 e — N H I O =——O

V7= SV NI D B T o B ull N

OC—Hw—/—mw——wW—— = —— N O oO———¢+——oO O N —— N —— N —— N ——N+—— O
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Each component now implicitly describes a forest-to-tree morphism ®; — 7T;, where S' = e®g
and ®q,...,®, is an ordered partition of ®g. If we remove the grayed-out chords and shift
levels—in terms of the sequent calculus, this corresponds to removing the pair of R~ and R"
steps bracketing each component, as well as a list of pairs of L~ and L steps—then we can
iterate the process on smaller proofs. Eventually we obtain a full recursive decomposition of
the original zigzag morphism S — T using the inductive rules in (5.4), which we can play
back as a morphism [S], — [T], in PTree. This defines the bijection 1, for the case k = 0.

The bijection may be better visualized by imagining the string diagram for the zigzag
morphism as a kind of topographic relief map:

=} w w W R — N O — = O N o n N V) o

The source and target trees are rooted at the North and South ends of this map, with the
morphism exhibiting a continuous deformation between them.

e
NN
N >~

Bijection in the general case. The inductive procedure we have sketched may be adapted
to the general case k > 0 by extending the rules (5.3) and (5.4) to represent trees with a
marked node on their leftmost branch. We begin by introducing a grammar of formulas for
marked trees °T" and marked forests °®:

°T =00 | &°D °® = °T, ®’ (5.5)

A marked forest °® starts with a marked tree °T" followed by an unmarked forest ®. A marked
tree °T" can be built either by taking an unmarked forest ® and attaching the root of each tree
to a marked root vertex, o®, or by taking a marked forest °® and attaching each of its roots
to a new unmarked root vertex, ¢°®. We introduce two additional judgments °® —; °T
and °®’ —j, °® defining marked-forest-to-marked-tree and marked-forest-to-marked-forest
morphisms, where the index k specifies the height of the mark:

0:®@),..., P > D °D(, D), ..., P, - P °Py -1 °T & — P’
od), oD, ..., 0D, —( oD o(°D)), 0D, ... 0D, —1q e°D °Pg, d —y, °T, D’
(5.6)
The key invariant enforced by these rules is that the marked node of the forest on the left is
sent to the marked node of the tree or forest on the right. Just as we argued for PTree, it is
clear that any morphism in PTree| ;) may be built inductively using the above rules.
Similarly, for k£ > 0, the string diagrams of morphisms in Bif(p,);r may be decomposed

recursively by first splitting along 0 = 0 boundaries essentially as before, with the
difference that the bottom boundary (corresponding to the left side in our rotated diagrams)

is of the form %k = k . For example, the following diagram represents a morphism in
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Bif (py,)2:
(V] o — o o (el (el [es] [\ — [\ (=
N L =
e ‘ ‘ =) Py P P! rd — — N I
PBEsUPNaRrd sl N
[\ w - [\ o — o [\ [N} [N} [} [\ (e

After splitting along 0 = 0 boundaries, we obtain as before a list of components that
may be interpreted as morphisms in Bif(p,,)o, except for the leftmost component which may
be reduced to a morphism in Bif(p,); after removing the chords incident to 0 and shifting
levels. We recognize the inductive structure of marked morphisms of (5.6).

Naturality. Finally we need to show that the bijections (¢;)s 1 are natural — ¢—
in S and T, which is equivalent to functoriality: i (« - f) = g () - ¥y (B) for ﬂ
every pair of composable zigzag morphisms « and 5. J
For example, consider our above example restricted to a prefix for clarity,
along with a second morphism which is composable along the middle zigzag I
formula, as represented on the right. J
2
|
0

1

w—t s w=——rl el

wd 1l Lyl o
G O

These morphisms can be seen as relief maps: the tree morphism in 7' — T” is
determined by the order-preserving functions 7'(n) — T”(n) between nodes of )l
height n, which can be read from the n-th layer of the relief map. H ] I

0

o—5e

0=——0

If the two diagrams are composable, then each layer of the relief map is composable:

| A

0=— 2 ——

0

l

———o
W wE—

[CRIND NI AV I

|
!
l

wd o
—

|
|

o=——o-+ ¢ O-—FFr¢r—0=—=0

| 3=

1

o— =
w—=Ke

3
I
For each layer of the relief map, the order-preserving function is determined by connect-
edness in the diagram: each node in the input tree is related to the (unique) node in the
output tree that belongs to the same connected component. This property of connectedness
is preserved by diagrammatic concatenation: the connectedness relation of the composite
diagram (corresponding to a layer of « - 3) is the composition of the connectedness relations
of the two diagrams. O

o—S

2

Proposition 5.1 is a corollary of Theorem 5.3, since the bijection between zigzags and
plane trees sends zigzags that strictly alternate between 0 and 1 to trees of height 1, which
may be interpreted as ordinals.

The correspondence established in Theorem 5.3 was unexpected to us, and we think
its interest is that it relates two very different representations of the same categories. The
calculus of maximally multifocused proofs gives an effective procedure for enumerating tree
morphisms by building them up step-by-step in a linear fashion, very differently from how
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0=—=20 0=—=0 0=—=0 0=—=0 0=—=0 0=—=0 0=—=0 0=—=0 0=—=0 0=—=0 0=—=0
v [od Ied Lod Lod Lod LA 1od 1od 1] | o]

0——2 0——2 0——2 0——2 00— 2 0——2 0——2 0——2 0——2
0——2 0+—F2

=T [T B0 B4 1IN B B4 B4 B4
R T %

0——0 0=——0 2=—72 2=—=2 (=—0 2=—=2 2=—=2 2=—=2 2=—=2
i Ui A A Rl R heA B | el R | R

R R L L R L L L L
R L 0——1 0——1 1—2 1—2 0——1 1—2 1—2 1—2 1—2
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o—o a—:z || o] T | T | Do A T | T | T | T
R TL 0——2 0——2 0——2 0——2 00—+ 2 0——2 0——2 0——2 0——2

| Bl =T Pyl B T D] Pyl Py
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0——1 2==2 0=—=0 1—2 2==2 0=—=0 0=—=0 1—2 1—2
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2 2 0 0 0——3 1—2 0——1 0——2 1——2 0——1 0——1 0——2 0——2
L e B O T I T Il B B S R LA O
1—2 0——1 2——3 1——=1 1l=—=1 0=—=0 2==2 0=—=0 l=—=1 0=—=0 2==2
Fel IeN Rl Dod el Ded N1 1od ol ed T
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Figure 7: An exhaustive listing of maximally multifocused derivations representing all mor-
phisms « : S — T between a pair of plane trees. The derivations corresponding to
the two natural transformations in (5.1) are highlighted in blue and red.

one might first attempt to define a natural transformation through some ad hoc procedure,
or even using the inductive rules (5.4) and (5.6) described in the proof of the theorem (which
are easy enough to formulate but non-linear in the sense that some of the rules have more
than one premise). In Figure 7, we show the maximally multifocused proofs (and associated
string diagrams) representing all morphisms « : S — T between the pair of trees (5.1)
considered earlier. These were generated by applying the proof search procedure described
in Section 3.6, which we implemented as a short Haskell program.?

2Available at github.com/noamz/free-bifibrations. This implementation was useful to us for running
experiments, formulating conjectures, and generating diagrams. Counting proofs using this procedure even
helped to reveal a bug in a previous incorrect formulation of the lock conditions for maximally multifocused
proofs, before we arrived at the correct version in Section 3.6.


https://github.com/noamz/free-bifibrations
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Before moving on to the last example, let us make one more easy observation about
Bif(p,). The ordinal w may be seen as the category of elements of the regular action of the
monoid of natural numbers (N, +,0) on itself. In particular, there is an evident forgetful
functor 0 : w — By into the monoid of natural numbers seen as the one-object category
freely generated on a loop f * . This functor sends every pair of natural numbers m < n
to the unique arrow f* : % — % such that k = n — m; since w is a poset, § is trivially a
faithful functor.

Proposition 5.4. If 6 : C — B is a faithful functor then the induced morphism of bifibrations

Bif(p) —2 Bif(6 o p)

o e

C———53

1s full and faithful relative to §, in the sense that the induced mapping on relative homsets
Bif(p) ¢ (S, T) — Bif(dop)sr(AsS, AsT) is a bijection for all compatible S, f,T. (Equivalently,
the induced functor from Bif(p) into the fiber product C 5 X Asop Bif(§ o p) is fully faithful in
the ordinary sense.)

Proof. The existence of the morphism of bifibrations As : A, — As, comes from the
extended universal property (0.5) of the free bifibration A, and corresponds to functoriality
of the A construction. It has a simple inductive definition:

AsX = X As(frS) = (6f)" AsS As(g~T) = (69) AsT

As(f\ga) =0f \sg Asar As(a.f) = Asa.df  As(g.a) =dg.M5 As(aj/G) = Asasp/ dg
The action of A5 may be even easier to see in terms of the double category of zigzags: every
arrow of every generator is simply hit with the functor §. For example, every Lf"-cell of
7(@) is mapped to a L(5f)"-cell of Z(B), and every Lg -cell to a L(d5g) -cell:

LA 5A 29, 5o c 2 o2, o
A ] H ] sl
B——C 63750 BTC/ BWC”

In general, we obtain a mapping of relative homsets of the form:
Bif(p) (S, T) — Bif(d o p)ss(AsS, AsT)

By inspection of the action on the generators, we can see that surjectivity of this mapping
reduces to functoriality of 4, and that injectivity reduces to faithfulness. []

Corollary 5.5. Let iy : 1 — By be the unique functor of one-object categories corresponding
to the unique monoid homomorphism from the trivial monoid into (N,+,0). Then the
induced morphism of bifibrations As : A, — A1, is fully faithful relative to 6 : w — By. In
particular, PTree is equivalent to the full subcategory of the fiber category Bif(!x)« spanned
by the objects in the image of As.

Proof. We apply Proposition 5.4 substituting !y = d o p,,. Then we instantiate the bijection
of relative homsets Bif (p,,) ¢ (S, T) = Bif(In)sr(AsS, AsT) at f = ido, df = ids and conclude
using Theorem 5.3. L]
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The category Bif(!y) is in some sense more fundamental than Bif(p,). Its objects may be
interpreted as arbitrary one-dimensional walks, starting at the x-axis and moving up and
down with no restrictions. Below we show an example formula and the associated walk,
which crosses below the z-axis:

A A

Every such formula can be assigned an integer corresponding to its final displacement
relative to the z-axis (in the above case: +1). Indeed, displacement corresponds to the
object component of a functor [—], : Bif(!n) — (Z, <) obtained from the universal property
of Bif (!y) by considering the poset (Z, <) as a discrete bifibration over By (where fTn = n+1
and f~n =n— 1), equipped with the origin point 0.

Bif(ly) contains PTree as a full subcategory, per Corollary 5.5, but it also contains
morphisms between objects that are not Dyck walks, as the below example illustrates:

(5.7)
—_— o [ | [ | [ — o——o
— — — — —
g | =
2 r:lajwl’z\\”lx %
= [SE=—————N)—— " = N & | [N} = [N} e}

[y

Here we have indicated the running totals of the displacements of the walks as a guide
even though By really only has one object *. Speaking literally, the diagram above can be
interpreted as a double cell of Z(Z, <) mapping canonically to an arrow of Bif(!y).

5.3. A free ambifibration over A. The last example we consider is inspired by the
so-called fat Delta category A, introduced by Joachim Kock [26] to axiomatize a notion
of higher category with weak identity arrows. One way of defining A is as a subcategory
of the arrow category of A, with objects given by epis n — k and with arrows given by
commutative squares whose upper leg is mono:

n—-p

l | (5.8)

k—— 7

Observe that there is a canonical embedding j : N — A of the set of natural numbers viewed
as a discrete category into fat Delta, defined by j(n) = id,,. Moreover, there is an evident
projection functor cod : A — A, which is known to be an ambifibration relative to the
(epi, mono) factorization system on A (see Sattler [44] and Pradal [42]).

As well-known (see Mac Lane [35, VIL5]), the simplex category admits an (epi, mono)
factorization system, with the epis being generated by the maps 6]’ :n+1—n (0 <i<n)
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and the monos by the maps 6] : n - n+1 (0 < ¢ < n), where ¢ is the unique order-

preserving surjection sending ¢ and 7 4+ 1 to ¢, and d;' is the unique order-preserving injection
whose image avoids element ¢. Moreover, these generators satisfy the following standard
equations (please recall that we write composition in diagrammatic order):

sponl = onortt if i < j (5.9)
G;lj:llaf” = O’?—HU? ifi<y (5.10)
R if i <j (5.11)
=id, ifi=jori=j+1 (5.12)

= ol e ifi>j+1 (5.13)

Now let P = {0 |0 <i<n}and N = {d | 0 <i<n} and consider the free (P, N)-
fibration generated by the inclusion ¢ : N — A of the set of natural numbers viewed as a
discrete category into the simplex category. Since P and N generate the epis and monos
respectively, P* = Aepi, N* = Amono, we have that Bif(i, P,N) ~ Bif(i, Aepi, Amono) by
Prop. 4.3, and so A; v : Bif (i, P, N) — A is the free (epi, mono)-ambifibration on 4.

The universal property of Bif(z, P, N) and the equation i = cod oj imply that there is a
canonical morphism of (epi, mono)-ambifibrations Bif(i, P, N) — A.

Let us now forget about this connection with fat Delta, and just make some combinatorial
observations about Bif (i, P, N). We refer to objects of Bif (i, P, N) as ambisimplicial formulas,
and will pay particular attention to formulas S = 0, which we call closed. Observe that a
closed ambisimplicial formula corresponds to a walk n ~» 0 along the graph below:

—
0 > 1 2 > 3
H <7

At each positive ordinal k+1, we choose to either pull along some 65 or push along some Jf .

Hence there are double factorial (2n — 1)!! = (2n — 1) - (2n — 3) ---3 - 1 many such formulas
with source x(S) = n. The double factorial numbers are known to have many different
combinatorial interpretations [10], and we state here another: they count n-leaf increasing
binary forests, by which we mean a forest of binary trees where every binary node and every
root node is assigned a distinct label in such a way that the labels increase when moving
from parent to child. See Figure 8.

To interpret a closed ambisimplicial formula .S as an increasing binary forest, the idea is
to start by drawing the x(S) = n edges, and then to progressively add either a binary node
(joining two edges into one) or a root node (terminating an edge), labelled m and attached
to the ith free edge, depending on whether we pushed along an epi 0;" : m +1 — m or
pulled along a mono §;" : m — m + 1 in constructing the formula. For example, here is how

we build the increasing binary forest corresponding to the formula §3 0(1]+ 62" 3:
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Figure 8: Depiction of all 15 closed ambisimplicial formulas with x(S) = 3 as increasing
binary forests. The labels A—G indicate the split into seven equivalence classes.

Now, let us quickly point out that different forests/formulas can be isomorphic in the
category Bif (i, P,N). In particular, equations (5.9) and (5.10) induce natural isomorphisms

— _ — 1—
oo S=61 ot S (5.14)
et S = gttt g (5.15)

for all i < j. In Figure 8 we indicate the equivalence classes for the case x(S) = 3 by the
letters A—G. Each of these equivalence classes may be canonically represented by a strictly
alternating zigzag in Z(A, Aepi, Amono), as per the following correspondence for the seven
equivalence classes of the figure (we only label the arrows that are not uniquely determined):

o o 1)
A=0—3 B=0—2<3 C=02«3 D=0—1«2-23
51 52
E=0—1«3 F=0—1«2—3 G=0—1«2>>3

The sequence counting the number of equivalence classes of closed ambisimplicial formulas,
1,1,2,7,35,226,1787,16717, .. .,

is apparently OEIS A014307, known to have various other interpretations [43].
Perhaps most interestingly, the remaining equations of the simplex category (5.11)—(5.13),
which mix § and o, induce non-invertible logical entailments between formulas:
T HECE if i < j (5.16)
6 S =oj" s ifi=jori=j+1 (5.17)

oS =t ol S ifi>j+1 (5.18)


https://oeis.org/A014307
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The middle entailment is obtained as the composite of cartesian arrows d;g - 0jg, which
lies over the identity by equation (5.12). For the first and third, recall that in general, any
commutative square ab = cd in the base of a bifibration (or in the base of a (P, N)-fibration
with b,c € P and a,d € N) induces a canonical natural transformation ¢t a= S = d~ " S:

— idg
S= S
—  LaRb"
a S — bt S

a_S=d>b+S

LctRd
cta S=d S (abed)

The Beck-Chevalley condition asks that this natural transformation be invertible whenever
ab = cd is a pullback square, but we are in a free setting where the BC condition fails.

All of these non-invertible entailments have simple graphical interpretations, either as
moving a binary node upwards relative to a root node somewhere on its right/left, or as
joining a root node to an edge on its immediate left /right to form a binary node, as drawn
below (we only show one version of each type of transformation, eliding the mirror image):

N l | _ 510

Now define a family of posets (Fj,)knen as follows. The carrier of F,, is the set of
ambisimplicial formulas S = k such that x(S) = n (i.e., forests with k£ open roots and n
open leaves), quotiented by (5.14) and (5.15). The order relation is the least congruence
generated by (5.16)—(5.18), where by congruence we mean that S < T implies ¢" S < et T
and m~ S <m~ T. For example, here is the Hasse diagram of Fj 3 using the same labels for
the equivalence classes from Figure 8:

Theorem 5.6. Bif (i, P, N)x ~ [ [,,cny Flon-

neN

Proof sketch. We have already established that the laws (5.14)—(5.18) hold in the free
ambifibration, which means that the F},,, embed into Bif(i, P, N)x.
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Conversely, we will begin by showing more generally that if o : S == T is an arrow of
Bif (i, P,N) and f = em is the epi-mono factorization of the underlying arrow in A, then
¢" S < m~ T in the appropriate poset Fy,, with n = x(S) = x(T') and k = cod(e) = dom(m).
We prove this by induction on derivations. The interesting case is when « ends in a non-
invertible rule, for example suppose it is of the form a = g.o/ : g~ S =, T for some
o S =T and g € N © Amono. By the induction hypothesis, we have that e" S < m~ T
where h = em, e € Aepi, M € Amono. Let [ = dk, d € Aepi, K € Amono be the epi-mono
factorization of f = gh. Thus we have dk = gem. By the orthogonal lifting property there
is a unique mono ¢ making the diagram below commute:

g

a| et m

Hence d" g- S < ¢ et S< ¢ m T =k T, where the first entailment is an instance of the
(abcd) scheme on the square ge = d¢. (Here we need a lemma that every instance of the
scheme is valid, ¢t a~ S < d” b" S, for a,b e Aepi and ¢, d € Amono, which we can prove by
induction on the length of the P-factorization of c.)

Finally, to establish the equivalence Bif (i, P, N)i ~ | [, oy Fi,n We need to verify that the
fiber categories are preorders. In fact, we claim that the total category Bif(i, P, N) is itself
a preorder: for any pair of ambisimplicial formulas S = n,7 = m there exists at most one
arrow « : .S = T' lying over a unique order-preserving function f : n — m. Intuitively, the
reason why is that left division by an epi e and right division by a mono m are deterministic
and independent operations:

e determinism: given an arrow f, there is at most one g such that f = eg and at most one h
such that f = hm, so given any derivation a with underlying base arrow f, we can write
e\ a and a /m rather than e \; o and « 5/ ™ without risk of ambiguity;

e independence: if « is divisible on the left by e and divisible on the right by m (i.e., both
e\ a and « /M are defined), then it is simultaneously divisible on the left and right (i.e.,
e\ a /m is defined), by the orthogonal lifting property:

Determinism and independence imply that any two derivations of arrows a1,a9 : S — T
are permutation equivalent: they necessarily perform the same series of multiplication and
division operations, although not necessarily in the same order, but if we examine the first
place that they differ — say that a; performs a left division e \ § and a9 a right division
B /™ — then we can always replace that by a bi-division e \ 8 /7 and continue unifying
the rest of the proofs. ]

We remark that since A is both P-FP and N-FP (like any category relative to a class of epis
and monos), every entailment S < T"in F},,, is witnessed by a unique maximally multifocused
proof o : S = T. For example, below on the right we show the maximally multifocused
proof corresponding to the forest entailment on the left (we work with strictly alternating
zigzags, using graphical conventions for the corresponding forests that should be clear, and
we notate order-preserving functions f : n — m by tuples of numbers ay,...,an,—1 that
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indicate the cardinalities of the fibers a; = |f~1(4)]):

8

§ —————
1,1,1,0,1,0,1,1[ |- R l1,1,1,1,1,1,2
6 —1,1,10102— 7

’ R 11,1,1,1,1,0,1
6 —1,1,1,01,2— 6
|
l i 6 42— 2
1,1,2,1,1l L
\T/ - W l 5 32— 2
Q Q 1,1,0,1,1[ L
4 22— 2
272l Lt
2 =2
0,0I L
0 0,0 — 2
H R oo
0

The (F).n)nen seem to define an interesting family of posets. For example, we observe
that Fy,, contains the lattice of noncrossing partitions as a quotient. A noncrossing partition
of order n is a partition of the ordinal n = {0,...,n — 1} such that the diagram defined by
drawing the elements in order and then connecting all of the elements within the same block
by a corolla is planar. For example, of the {3} = 7 partitions of 4 into two blocks, all but
one are noncrossing:

0123 0123 0123 0123 0123
W N % P NI NS
0123 0123

The restriction of the usual refinement ordering to noncrossing partitions of order n defines
a poset K, known as the Kreweras lattice.

Proposition 5.7. K, is the quotient of Iy, obtained by inverting (5.16) and (5.18), or
equivalently by imposing the Beck-Chevalley condition on the free ambifibration A; p .

Proof. The squares corresponding to equations (5.11) and (5.13) are pullback squares in A,
and hence the respective natural transformations (5.16) and (5.18) become invertible if one
assumes the BC condition. The noncrossing partition associated to a closed ambisimplicial
formula is obvious if one looks at the corresponding increasing forest, since imposing (5.16)
and (5.18) as equivalences in addition to (5.14) and (5.15) has the effect of forgetting the
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order in which nodes are created and reducing the forest down to its connected components.
For instance, formulas A;-Ag from Figure 8 correspond to the partition { {0}, {1}, {2}},
while formulas C;, Ca, and D; correspond to the partition { {0}, {1,2}}. The only remaining
law (5.17) (see right side of (5.19) for its diagrammatic depiction) exactly describes the
covering relation for the refinement order on noncrossing partitions. L]

For example, K3 is obtained from Fp 3 by identifying two pairs of equivalence classes C ~ D
and B ~ G. Proposition 5.7 and the seminal results of Kreweras [28] on the lattice of
noncrossing partitions as well as related results for other Catalan lattices [6] motivate us to
ask two open questions.

Question 5.8. K, is a lattice for all n: is Fy, (and more generally F},,,) likewise a lattice?

Question 5.9. The number of intervals I[K, | = { (z,y) | * <y} in K, is given by a simple
formula |I[K,]| = 2n1+1 (3:) is there likewise a nice formula for |I[Fp ;]| (and more generally
for |I[Fy]|)?

It is known that the lattice of noncrossing partitions is self-dual K, =~ K., and even locally
self-dual in the sense that for every pair of noncrossing partitions x,y € K,,, the restriction
of K,, to the interval [z,y] is self-dual [49, V2:465]. It may be interesting to study this
duality from a fibrational perspective, in particular relating it to the duality between A and
the category of finite strict intervals and order-and-boundary-preserving maps [23].

6. CONCLUSION AND FUTURE DIRECTIONS

This work originally began as an exercise in categorical proof theory, with our hope being
that a systematic understanding of the construction of the free bifibration on a functor of
categories p : D — € could eventually help in analyzing more complex fibrational situations
that arise in logic and type theory. This “easy” exercise proved more challenging than we
expected (particularly the question of characterizing normal forms to obtain a canonicity
result), but was also rewarding as we realized the implicit complexity and richness contained
in the problem. We were encouraged by the close connection between the sequent calculus
presentation of the free bifibration and the presentation of the double category of zigzags
by generators and relations, showing the unity of purpose between two basic tools in the
proof-theoretic and category-theoretic repertoires; and we were excited to discover the
examples of free bifibrations and ambifibrations in which the combinatorial complexity
emerged from much simpler generating data. We think there are many natural paths for
further study.

Perhaps the most obvious next step would be to generalize the constructions beyond
functors of categories. As mentioned in the Introduction, we were originally motivated by
phenomena that arise when considering bifibrations of monoidal closed categories and of
generalized multicategories and polycategories. We expect that the construction of the free
bifibration on a functor should generalize to functors of polycategories, but the details are by
no means obvious, especially the appropriate generalization of the FP condition and whether
there is a reasonable notion of maximal multifocusing. Another natural generalization
would be to incorporate higher cells in the base category, such as by considering functors
of 2-categories or double categories. Indeed, we already somewhat implicitly treated the
base category as a 2-category in our conventions for drawing string diagrams where we
represented equalities by vertices, as in Figure 1; taking the base to be an actual 2-category
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would give this convention a more formal status, and may also make it possible to relax
the FP condition while retaining canonicity. It should be noted that Licata, Shulman, and
Riley [34] considered bifibrations of cartesian 2-multicategories, and that 2-cells were used
to good effect in their notion of “mode theory”.

We used string diagrams in this paper mainly for their evocative power (particularly
in the proof of Theorem 5.3), but we believe there is value in taking them seriously as
geometric objects and developing a purely topological or purely combinatorial description of
free bifibrations. Dawson, Paré, and Pronk did exactly that in their description of II3(€) for
a free category, defining a bijection between 2-cells in II5(€) and isotopy classes of planar
diagrams presented by matchings on a set of oriented points. It could be worthwhile to
extend such a correspondence for free bifibrations beyond the case of a free base category,
to general categories or 2-categories.

Although we did not explore the direction in this paper, there is clearly a link to
be developed between bifibrations or (P, N)-fibrations and game semantics [20, 36]. It is
noteworthy that the free bifibration on ps : 1 — 2 appeared incognito in a paper on the
categorical combinatorics of innocent strategies [18], with the total category Bif(p2) of the
free bifibration being equivalent to the authors’ category of schedules Y.

The surprising connection between the free bifibration on p,, : 1 — w and the Joyal-
Batanin-Street category of plane trees—which contains Bif(p,)o as a wide subcategory but
is not equivalent to it—is still somewhat mysterious to us, and we are not sure whether it is
a mere coincidence. Similarly, we do not know whether the free ambifibration on 7 : N — A
may (like the fat Delta ambifibration) be useful for defining weak higher categories, but it
appears to be an interesting object of study in its own right.
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APPENDIX A. SOME MORE DETAILED PROOFS

A.1. Section 1.

Lemma 1.9. Cut is compatible with permutation equivalence. If oy ~ ag then - ~ as- 8,
and B - a1 ~ - ag,

Proof. By symmetry it suffices to prove that a; - 6 ~ as - 8. The proof is by case analysis on
the proof of a1 ~ ao: the equivalence and congruence cases are direct induction, the more
delicate cases are the generating equations, which require an induction on 5.

Case f.(a.h) ~ (f.a).h. To reason about ((f.a).h) - 3, we perform a case analysis on 3,
depending on whether it starts with a left rule or a right rule. (It cannot be an atom as its
domain is of the form h* U.)

If 8 starts with a left rule and its domain is of the form A" U, we have 8 = h'\; 8’ and

(f-(a-h)) - 3
f-((ah)-B)
ch'(( h) - (h\i )

)
«a).h) - (h\; B)
((f.a).h)-pB
If B starts with a right rule, let us assume that it is a division 3 = 3’ ;/ j—the
multiplication case is similar. Then we have

(? (a h)) - B

) ghl/ Jj by induction hypothesis (5" < )

Case (f\g@).h ~ f\gp (a.h). This proof is in fact identical to the previous one: the proof
above only depends on the fact f.a.h has a multiplication on the right, not on the operation
performed on the left.

Case (f.a) fg/h ~ f.(ag/h). To reason about (cy4/h)- 3, we again reason by case analysis
on 3, depending on whether it is a multiplication by h on the left or a right-rule.
If 3 = h.A’, then we have

((f-@) g9/ h)-B_
((f-) go/ ) - (h-5")
(fa) 5

~ [l f)
F(ag/R)- (h-8)
flarg/h)-B)

~ (filag/h)-B
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If 8 starts with a right rule, for example 3 = 3’ ;/ j, then we have

((f-@) g/ h)-B
(f.@) fg/h)- (B ,i/j>7
((f-a) rg/ h) - B') fgi/
i (« / ) - B) gz/j by induction hypothesis (5’ < )
flag/ ) (B"i/7)

fag/h))-B

(
=
~

(

( ) -

Q
e}
> > >

Case (f\gn @) g/ h ~ f\g (a tg/ h). Again, this proof is identical to the previous case, as
they both have a division on the right of a. []

Lemma 1.11 (n-expansion).
For any o : ft S =4 T, forany §:S =y g T, we have:

a~ fi\g(fs-a) B~B-9r)s/9
The proof of this equations is included in the proof of the following lemma.
Lemma 1.10 (identity is neutral). The identity derivations are neutral elements for cut:
idg.:a ~ a ~ «-idg

Proof. By induction on S. We prove the left neutrality case, right neutrality is symmetric.

Case X. If o has an atomic domain or codomain, it must be an atomic derivation §:
idy-a=(dx) - d=(dy 0) =0 =«

Case f*S.
idf+5"04
= (f\idg fs) -«
~ f\g(fs-a)

We now prove that any « is permutation equivalent to f\4 (fs - a) by induction on a.
If o starts with a left rule, we must have a = f\4 ¢/, and then:

f\g (fs-a)
= f\g((ids.f) - (f\ga"))
= f\g (ids-a')
~ f\g¢ by induction hypothesis on S

If o starts with a right rule, for example o = o ¢/ h, we have

f\g (fs-a) o
f\g (fs- (' g/ h)
= f\g((fs-a')g/h)
~ (f\g(fS Q))g/h
~ o 4/h by induction hypothesis on o’

= «
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Case g T.

idg_T-a
= (Irip/9) -«

We prove that any « is permutation equivalent to (g7 iqz/ g) - @ by induction on a.
If o starts with a left rule, we must have a = .o/, and so

(Griap/9) - @

((9-1d7) 145/ 9) - (9.

(7. idT> o

g.(idp ~CM/)

~ g.o by induction hypothesis on T
o

If o starts with a right rule, for example a = o' 1,/ i, we have
(ET idB/g) Qo _

= (Grids/9) (&' n/1)
(

(Griap/9) - ) n/i
~ i by induction on o’
a

Lemma 1.12. Cut is associative: (- ) -y~ a-(B-7).

Proof. The proof is by induction on «, 3, 7.
If o is an atomic derivation, then 8 and v must be as well—and conversely—and then

associativity is immediate:
(0-€)-C=(0eC) =6 (e ()

If o starts with a left rule, then associativity is immediate. For example if o = f.o, we
have

)
“v)) by induction hypothesis (o/ < «)
)

Symmetrically, associativy is immediate if v starts with a right rule. When neither of
those two easy cases apply, we know that « starts with a right rule and v with a left rule.
We then reason by case analysis on f.
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If 3 starts with a multiplication on the left, 8 = g.3’, then the right rule of o must end
a matching division, & = o /g, and we have

(a-B)-v
= ((o'f/9)-(@.8))
~ (o )y
~ o (B ) by induction hypothesis (¢/ < «, 8’ < )
~ (o' y/g)- (9.8 -7))
~ (o' f/9)-((-8)7)
= a-(8-7)
The proof is similar if § starts with a division on the left, 8 = g\, 8’ and a = ’.g:
(a-B)-v
= ((a".9)-(g\n B)) - v
~ o (B ) by induction hypothesis (¢/ < «, ' < )
~ (a.g) - (g\ni (B ’Y))
~ (og)-((g\nB) -
= a-(8-7)
The cases where [ starts with a right rule are symmetrical. []

A.2. Section 3.

Proposition 3.15.
Vo, o ~ InvSeq(S(aw))
Vo, Val, € InvSeq(S(aw)), o ~ al,
Proof. By induction on the underlying judgment of a,.

e If o, has a non-neutral judgment oy, : 77 N =7 g~ P, we have
S(er) i= 7\ S(rn - - Bp) /7

For any o, € InvSeq(S(ay,)), o, is one of the two sequentializations of the bi-inversion

7\ Buw / p for some By, € InvSeq(S(7n - - pp : N =rf, P)). Let us show the case

where o, := 7\ (Bw /D), the other case is similar. By induction hypothesis on the smaller
judgment N =,¢, P, we have 3, ~ (TN - - pp), and therefore

ahy =7\ (Buw /D)
~ 7\ (7N - w - Pp) /D)
~7\ (TN - )
~ Qy
where the last two equivalences come from Lemma 1.11.
e Otherwise o, has a neutral judgment o, : N == P, and we reason as in the definition

of S(aw,) by case analysis on «,,, which can be of the form .3, or (,.7. For example in
the case 7.5, (the other case is symmetric), N is of the form o~ @ and we have

InvSeq(S(ay)) = InvSeq(S(T.5w)) = InvSeq(a.S(Bw))
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For any o), € InvSeq(S(aw)), o, is of the form 7.8, for some ., € InvSeq(S(By)). We

w

have (), ~ B, by induction hypothesis on the smaller judgment Q = P, and therefore
al, =7.8, ~7.8y = ay
[]
Proposition 3.16.

Vm, Qm ~seq S(INvSeq(ap,))
VY, Vay, € InvSeq(aun), @ ~seq S(w)

Proof. The statement can in fact be strengthened into the following;:
Vau, € InvSeq (), am = S(aw)
This is proved by induction on the judgment of an, and a;,:

e At a non-neutral judgment 7° N =5 p~ P, oy, must be of the form 7\ 3, /7 with

Bm : N =1y, P, and o, € InvSeq(a,,) must be a sequentialization of the bi-inversion
7\ Pw / p for some [y, € InvSeq(S,,). By induction hypothesis we have S(8y) = B, If ayy

is m\ (Bw / p) (the other case is similar), we have

S(aw)
T\ Sy - aw ) /7

(
=m\S(rn -7\ (Bw /D) -Pp) /P
(
(

=7\S(Bw /P -Pp) /P

=7\ S(Bw) /P
=7\ Bm /P

e At a neutral judgment N = P, we reason by case analysis on a,,. For example if it is
T.fm (the other case (.7 is similar), we have a,, = 7.5, for B, € InvSeq(8,,). We have
S(Bw) = Bm by induction hypothesis, so

S(aw) = S(7.Bw) = 7.5(Bw) = 7.Bm = am
0

Theorem 3.20 (Local confluence). The rewrite system (par U gra) is locally confluent: if
Bm — qum — B, then there exists Y, such that Bp, —* Y <* B1,.

Proof. The source of each rewrite rule must be a stack of two bipoles. Thus all critical pairs
(where the source of two rewrite rules overlap) can be found by considering stacks of two or
three bipoles. Let us first enumerate all such stack shapes to determine which may contain
critical pairs.
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Enumerating all possible critical pairs. We exploit a symmetry that permutes L and R
rules to reduce the number of cases: for example, the reduction behavior of . R stacks is
symmetric to the behavior of R IL stacks.

Let us consider all stacks of two bipoles. They have one of the following shapes:

(1) L L: no reduction.

(2) L R: a park rule may be applied.
(3) L LR: no reduction.

(4) R L: symmetric to (2)

(5) R R: symmetric to (1), no reduction.
(6) R LR: symmetric to (3), no reduction.
(7) LR L: a grat rule may be applied.
(8) LR R: symmetric to (7).

(9) LR LR: no reduction.

We next enumerate the stacks of three bipoles. Notice that if a 2-bipole stack has no
reduction, then a 3-bipole stack formed by extending the 2-stack with a new bipole above or
below cannot form a new critical pair not already in the above enumeration. For example,
there is no reduction from L L, so extending it into L L R (or L L LR, or R L IL for example)
does not produce critical pairs involving all three bipoles. Any critical pair in an extension
is a critical pair of 2-bipole stacks, which we have already considered.

In other words, we only need to consider extensions of the reducible 2-bipole stacks,
modulo symmetry, to wit (2) L R and (7) LR L above:

.a) LR L: two overlapping par rules may be applied.

.b) L R R: extension of no-reduction (5).

.c) L R LR: extension of no-reduction (6).

.d) L L R: extension of no-reduction (1).

2.e) R L R: symmetric to (2.a).

2.f) LR L R: a gra, rule may be applied above, and a parR below.

.a) LR L L: extension of no-reduction (1).
.b) LR L R: same as (2.f).

.c) LR L LR: extension of no-reduction (3).
.d) L LR L: extension of no-reduction (3).
.) RLR L: extension of no-reduction (6).
f) LR LR L: extension of no-reduction (9).

Resolving the critical pairs. We now consider each of the above cases in turn.

(2) [L R] Two reductions from stacks of this shape must be two applications of the rule par'ﬁ,
which is deterministic under the FP condition, so the two right-hand-sides are equal.

(7) [LR L] As above, the critical pair is trivially resolved because gra, is deterministic,
under no assumptions.



90 B. CLARKE, G. SCHERER, AND N. ZEILBERGER

(2.a) [L R L] This is exactly the critical pair (3.6) that we resolved by introducing the gravity
rules, in this case gra:

afe
||
- — fe>
| e
=bfc> -
| &
bf=bg -
| = [
=blgdy -
doe ]\
afc 4 —gd— afe .
a Lt H gl z L H a| 'R TC
\.lffcﬁ egd \.,ffﬁ .
I H b| LRF ld
bfe=bge- “bfd=b'gd-
gra.
v LYR™ TC v| Lt H
\-,fgﬁ- \rfgd%
| LR [a ] |
egd ' egd

(2.f) [LR L R] This critical pair between park and gra, is resolved by composing the latter
with grag followed by par'F-{:
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fff%.
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o
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| & o
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| = b
egi

o
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afc
s

al LT R e
C—
bl L RT |4
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el L-R" |
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PR BAR G
(LR
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| & e
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e
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APPENDIX B. CUT ON MULTI-FOCUSED DERIVATIONS, DIRECTLY

In Section 3.4.5 we defined horizontal composition of strongly multifocused proofs, and this
definition is modulo permutation equivalence. We can also give a second, more syntactic
definition of cut, directly on strongly multifocused derivations, and show that it coincides
(modulo permutation equivalence) with the first definition.

Let us first define the operations (mx:auy,), (am:pp), which are equivalent to compositions
TN * Qm, Qi - pp but can be defined by a simple case analysis—we use a colon to emphasize
that this is a more primitive operation:

(i) i (S—yrP)—(S—, P)
By/P):ipp = B

(W\?/ﬁ)'ﬁp = T\ B

(TN :—) : (T N=;T)—> (N=,sT)
v\ B) = f

i (T\B/Pp) = Bas/P

In the case of (a, : pp) for example, the definition is by case analysis, but we know by
inspection of the judgment that a strongly multifocused derivation of ay, : S == p~ P can
only start with an inversion or bi-inversion rule.

We can now define the general cut of two strongly multifocused formulas, from S =, U
and U = T to S ==y, T. The definition is first by case analysis on S and T', with a
single case if S is positive or T' is negative, and then when S ==, T is a neutral judgment
N =, P we reason by case analysis on a,, and f3,,.

(—-—) i (" N=U)x (U=4p P)— (7t N =, p P)
m * Brm = m\ (7§ :am) - (Bm:pp)) /P
fg
(=) (N = U) x (U =4 P) > (N =4 P)
(@.0) - (B1-7) = 0.0y, f'm).T
(@ O/m) “ Bm = 5'(O‘;n - Bm) Bm # 5;n7_
am - (B,.7) = (am-B),)T Q # T.0,
(@) (T\g Brn) o= A By
(@.0p,.m) - (T \g Br) = (5.0p) - B,
(@ g/ D) (P-Br) = By
(@ £/ P) - (P-Bn-m) = gy (Bp)
d-€ = Je

For example, if «,, starts with a left-focusing rule, we propagate the left-focusing rule
in the output and recursively compute a cut at a strictly simpler judgment. If a,, is a
right-focusing or bi-focusing rule, then necessarily S, starts with a matching invertible rule
(thanks to strong focusing) and we have a principal cut. If «,, starts with a left-inversion
or bi-inversion rule, then its source formula S is positive and we are in the first case of a
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non-neutral judgment. Finally, if «y, starts with a right-inversion rule, then necessarily 3,
uses a focusing rule.

Proposition B.1. The explicit/intensional definition of cu, - Bm above agrees with the
extensional definition we gave earlier modulo (~seq) as S(Seq(cuy) - Seq(Bm))-

Proof. For each equation that defines «ay, - 8, we check that there is a choice of sequential-
ization of «yy,, By, that gives the expected result.

For example, in the non-neutral case, oy, : @ N = U must be of the form 7 \f o,
or 7w\ o), /7. If we have the latter form, we choose to sequentialize it into 7 \; (&' ¢/ T),

so that both cases can be sequentialized into a term of the form 7 \f a;,, where a;, is a

sequentialization of 7y : a;,. By the same reasoning f,, is sequentialized into a term of

the form 3;, ,/ p, with (3], a sequentialization of S, : pp. Their composition as weakly

focused proofs is (7 \f o) - (8., ¢/ P), which is equal to either of the two permutation-

equivalent proofs m\ 4 ((ary, - Bry) npg/ P) O (7 \fgp (0, - Biy)) £g/ P- Both choices strengthen

into m\ S(c, - 8.,) /P, which by induction hypothesis is 7\ (7 : @) - (Bm : Pp) /P as desired.
fg fg

In a representative neutral case, (7.a),,.7) - (7 \g 3},,), @, starts with a bi-inversion rule,

let us assume that it is of the form 7\ o/ /5. We sequentialize a,, into
h

(.7 \np @2 )
where o is a sequentialization of o/, and we have
((@-(7\np @) on/ P)-7) - (7 \n By)
= ((@(7\np @) o0/ P) - Buy
~ (@-((7 \np @) 1/ P)) * By
~ T (((T\np @) 1/ P) - B)

where ((7 '\, otyy) 1/ P) is a valid sequentialization of oy, and so this is permutation equivalent
to a sequentialization of @.(ay, - 3,) as desired. ]
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