
LIFTING TWISTED COREFLECTIONS AGAINST DELTA LENSES

BRYCE CLARKE

Abstract. Delta lenses are functors equipped with a suitable choice of lifts, generalising
the notion of split opfibration. In recent work, delta lenses were characterised as the
right class of an algebraic weak factorisation system. In this paper, we show that this
algebraic weak factorisation system is cofibrantly generated by a small double category,
and characterise the left class as split coreflections with a certain property; we call
these twisted coreflections. We demonstrate that every twisted coreflection arises as
a pushout of an initial functor from a discrete category along a bijective-on-objects
functor. Throughout the article, we take advantage of a reformulation of algebraic weak
factorisation systems, due to Bourke, based on double-categorical lifting operations.

Introduction

Delta lenses were introduced in 2011 by Diskin, Xiong, and Czarnecki [18] as a framework
for bidirectional transformations [1]. Johnson and Rosebrugh [26] initiated the study of
delta lenses using category theory, and there has since been a growing body of research
about their properties and structure [2, 10, 11, 12, 13, 14, 16, 17, 27].

One of the motivations for examining delta lenses is their close relationship with split
(Grothendieck) opfibrations. Both delta lenses and split opfibrations are defined as functors
equipped with a functorial choice of lifts, the key difference being that split opfibrations
require these lifts to satisfy a universal property. Given that delta lenses directly generalise
split opfibrations, it is often interesting and fruitful to explore the connections between
them, and discover new ways in which the theory of one informs the theory of the other.

The notion of an algebraic weak factorisation system (awfs), first introduced by Grandis
and Tholen [24] and later refined by Garner [21], generalises the notion of an orthogonal
factorisation system (ofs) on a category. In the definition of an awfs on a category C, the
left and right classes of morphisms are determined by the categories of L-coalgebras and
R-algebras for a suitable comonad-monad pair (L,R) defined on the arrow category C2.
An ofs may be understood as an awfs in which the comonad and monad are idempotent.

A leading example of an algebraic weak factorisation system is the awfs on Cat whose
L-coalgebras are the split coreflections (functors equipped with a right-adjoint-left-inverse)
and whose R-algebras are the split opfibrations [24, Section 4.4]. Motivated, in part,
by this example, we defined an awfs on Cat whose R-algebras are the delta lenses [15].
However, while this awfs resolved several aspects of the theory of delta lenses, a clear
understanding of the corresponding L-coalgebras remained elusive until now.
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Twisted coreflections. The primary contribution of this work is a simple characterisation
of the L-coalgebras corresponding to the awfs on Cat whose R-algebras are delta lenses.
We show that an L-coalgebra is a split coreflection with a certain unfamiliar property
(Proposition 46 and Corollary 50); we call such a split coreflection a twisted coreflection.

A twisted coreflection (f ⊣ q, ε) consists of a split coreflection

A B
f

⊣

q

ε : fq ⇒ 1B qf = 1A

such that if the image of a morphism u : x→ y in B under the right adjoint q is not an
identity morphism (i.e. qu ≠ 1), then there exists a unique morphism û : x→ fqx such
that û ◦ εx = 1fqx and u = εy ◦ fqu ◦ û, as depicted in the naturality square below.

fqx fqy

x y

fqu ̸= 1

εx εy∃! û

u

The name “twisted coreflection” was chosen for the reason that certain naturality squares,
as shown above, yield morphisms in the so-called twisted arrow category of B [30].

At first glance, the definition of a twisted coreflection appears to be quite unusual,
however we show that there is a natural characterisation in terms of pushouts (Theorem 28).
Let ιA : A0 → A denote the identity-on-objects inclusion of the discrete category A0 into A.
Given a split coreflection (f ⊣ q, ε), we may construct the following pair of commutative
diagrams in Cat. A twisted coreflection is precisely a split coreflection such that the right-
hand diagram below is a pushout, that is, such that A0×AB is the pushout complement [29]
of the pair (ιA, f) in Cat. Note that there is also a split coreflection (f ′ ⊣ q′, ε′).

A0 A

A0 ×A B B

ιA

⌝
π

q′ q

A0 A

A0 ×A B B

ιA

f ′ = ⟨1, fιA⟩ f

π

This characterisation of twisted coreflections is built upon an explicit construction of
the pushout of a fully faithful functor from a discrete category along a bijective-on-objects
functor (Construction 25). These pushouts are especially well-behaved as every morphism
may be decomposed into at most three generators. The construction may be also seen as a
special case of the coequaliser of a pair of functors from a discrete category [4, Section 3].

What are the examples of twisted coreflections? Given a category A, for each object
a ∈ A, choose a category Fa with an initial object 0a ∈ Fa. Let X = ∑

a∈A0 Fa, and let
f : A0 → X denote the initial functor which selects the initial object in each connected
component of X, that is, fa = 0a. Then taking the pushout of f along ιA glues each
category Fa to A via the identification a ∼ 0a, yielding a category B and a twisted
coreflection from A to B (Proposition 26). Remarkably, every twisted coreflection arises
in this way, that is, as a pushout of an initial functor from a discrete category along an
identity-on-objects inclusion.
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Double categories and lifting. Another aim of this work is to place the awfs of
twisted coreflections and delta lenses naturally into the setting of double categories, where
the notion of lifting a twisted coreflection against a delta lens is the central focus. Our
motivation comes from the desire to characterise twisted coreflections as precisely those
functors which lift against delta lenses, rather than as coalgebras for a comonad.

For each awfs (L,R) on a category C, there exists a pair of thin double categories
L-Coalg and R-Alg whose objects and horizontal morphisms come from C, and whose
vertical morphisms are the L-coalgebras and R-algebras, respectively [33]. The awfs
determines a lifting operation [6] on the cospan

L-Coalg −→ Sq(C)←− R-Alg

of forgetful double functors to the double category Sq(C) of commutative squares in C.
The lifting operation associates to each commutative square

A B

C D

s

f g

t

φf, g(s, t)

in C such that f is a L-coalgebra and g is an R-algebra, a canonical diagonal lift φf, g(s, t)
such that φf, g(s, t) ◦ f = s and g ◦ φf, g(s, t) = t. These lifts are compatible with the
horizontal and vertical structure of L-Coalg and R-Alg, and provide a structured version
of the orthogonality property of left class against the right class in an ofs [20].

Recently, Bourke [5] demonstrated that an awfs can be defined entirely in terms of a
pair of double categories L and R over Sq(C) equipped with a lifting operation that satisfies
two axioms; this formulation is called a lifting awfs. A key benefit of this approach is
that it uses lifting as the foundation for an awfs, rather than a suitable comonad-monad
pair, thus providing a clear parallel with the definition of an ofs.

Adopting this approach, we introduce the thin double categories TwCoref and Lens over
Sq(Cat) whose vertical morphisms are twisted coreflections and delta lenses, respectively.

TwCoref Sq(Cat) LensU V

In the main theorem of the paper, we show that this cospan admits a lifting operation
that determines an awfs on Cat (Theorem 48). The two axioms of an awfs placed on
the lifting operation ensure that every functor factorises as a cofree twisted coreflection
followed by a free delta lens, and that twisted coreflections are precisely the functors that
lift against delta lenses, and vice versa.

Although it is possible to use the basic definitions of twisted coreflection (Definition 20)
and delta lens (Definition 1) to construct the lifting operation explicitly, as illustrated
in Figure 1 and Figure 2, checking functoriality of the lift as well as the horizontal and
vertical compatibilities is quite tedious. Instead, we use the “diagrammatic” presentations
of twisted coreflections (Proposition 26) and delta lenses (Lemma 11) to construct the
lifting operation via basic universal properties (Proposition 33).
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h

k

(f ⊣ q, ε) (g, ψ)
j

quqx qy

εx εy

u

fqx fqy

x y

ψ(hqx, kεx) ψ(hqy, kεy)

ju

hqx hqy

jx jy

kεx kεy

ku

ghqx ghqy

kx ky

Figure 1. Lifting a twisted coreflection (f ⊣ q, ε) against a delta lens (g, ψ).
If q(u : x→ y) = 1, then ju = ψ(jx, ku).

h

k

(f ⊣ q, ε) (g, ψ)
j

quqx qy

εx ∃! û εy

u

fqufqx fqy

x y

hqu

ψ(hqx, kεx) ψ(jx, kû) ψ(hqy, kεy)

ju

hqx hqy

jx jy

ghqu

kεx kû kεy

ku

ghqx ghqy

kx ky

Figure 2. Lifting a twisted coreflection (f ⊣ q, ε) against a delta lens (g, ψ).
If q(u : x→ y) ̸= 1, then ju = ψ(hqy, kεy) ◦ hqu ◦ ψ(jx, kû).
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Cofibrant generation by a double category. From a global perspective, delta lenses are
exactly the functors that admit coherent chosen lifts against twisted coreflections; this may
be summarised concisely as an isomorphism of double categories Lens ∼= RLP(TwCoref)
in the notation of Section 1.3. However, from a local perspective, a delta lens is a functor
that admits a chosen lift against the functor δ1 : 1→ 2, as shown below, subject to two
axioms. How do we reconcile these perspectives?

{0} A

{0→ 1} B

a

δ1 f

u

φ(a,u)

Garner [21] introduced the notion of an awfs being cofibrantly generated by a small
category, and this was later extended to cofibrant generation by a small double category [6].
In other words, each morphism in the right class R of the awfs is generated by a coherent
choice of lifts against morphisms in J, that is, R ∼= RLP(J).

In Theorem 4, we show that Lens ∼= RLP(Jlens) for a small double category Jlens, thus
unifying the global and local perspectives and providing a rare example of a cofibrantly
generated awfs where the left class is fully understood [5, Example 6].

Delta lenses vs. split opfibrations. In applications of delta lenses to bidirectional
transformations in computer science, a central tension is the notion of least-change or
universal updating [3, 9, 25]. While the chosen lifts of a delta lens are not guaranteed to
be universal in any sense, the chosen lifts of a split opfibration must be opcartesian, a
good candidate for what it means to be “least-change”. In this paper, we consider another
way of comparing delta lenses and split opfibrations: the class of functors that they lift
against. These are the twisted coreflections and split coreflections, respectively. Although
we do not examine the potential interpretations of twisted coreflections in applications, we
hope that this will be done in future work.

Outline. In Section 1, we review the relevant background material on double categories
and Bourke’s approach to algebraic weak factorisation systems [5]. In Section 2, we define
delta lenses and construct the double category Lens of categories, functors, and delta
lenses. In Section 3, we introduce the notion of twisted coreflection, including several
alternative characterisations, and construct the double category TwCoref of categories,
functors, and twisted coreflections. Finally, in Section 4, we demonstrate that twisted
coreflections lift against delta lenses, and form an awfs on Cat. In Section 5, we outline
directions for future work.

Notation. Let Cat denote the category of small categories and functors, and let CAT
denote the category of locally small categories and functors. Let ∆ denote the full
subcategory of Cat spanned by the non-empty finite ordinals 1, 2, 3, . . . , n, and let δi
and σi denote the face and degeneracy maps, respectively. Composition is often denoted
by juxtaposition, however g ◦ f is also used for extra clarity or emphasis.
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1. Double categories and algebraic weak factorisation systems

In this section, we recall the concepts required to state the definition of an algebraic weak
factorisation system (awfs). Rather than using the original formulation of an awfs due to
Grandis and Tholen [24, Definition 2.4], we instead use the equivalent double-categorical
approach recently introduced by Bourke [5, Definition 3].

We begin with a brief overview of double categories (see Grandis and Paré [22] for a
detailed account), followed by the definition of a double-categorical lifting operation which
first appeared in Bourke and Garner [6, Section 6.1]. We then construct, from a double
functor W : J→ Sq(C), the double category RLP(J) of right lifts against J, and the double
category LLP(J) of left lifts against J. We conclude with the definition of an awfs.

1.1. Double categories. In this subsection, we recall the definitions of double category
and double functor, and establish our notation for these concepts.

A double category D = ⟨D0,D1⟩ is an internal category in CAT as depicted below.

D0 D1 D1 ×D0 D1 = D2id

dom

cod

⊙

The objects and morphisms of D0 are called the objects and horizontal morphisms of D,
while the objects and morphisms of D1 are called the vertical morphisms and cells of D.

A typical cell α in a double category is denoted as below, with boundary consisting of the
objects A, B, C, and D, the horizontal morphisms h and k, and the vertical morphisms f
and g. A double category is called thin if each cell is determined by its boundary; in this
case, we use (h, k) : f → g to denote a typical cell between vertical morphisms.

A C

B D

h

αf g

k

For each category C there is a thin double category Sq(C) = ⟨C,C2⟩, called the double
category of squares, whose objects are those of C, whose horizontal and vertical morphisms
are given by the morphisms of C, and whose cells are the commutative squares in C.

A double functor F : C→ D consists of a pair of functors F = ⟨F0, F1⟩ such that the
following diagram in CAT commutes.

C0 C1 C2

D0 D1 D2

F0

id

F1

dom

cod

⊙

F2=F1×F1

id

dom

cod

⊙

A double functor F will be called concrete if F0 is the identity and F1 is faithful. If D
admits a concrete double functor to Sq(D0), then it is a thin double category.
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1.2. Double-categorical lifting operations. In this subsection, we recall the notion of
a lifting operation, following closely the exposition of Bourke [5, Section 2.2].

Suppose L = ⟨L0,L1⟩ and R = ⟨R0,R1⟩ are thin double categories. Given a cospan of
double functors

L Sq(C) RU V (1)

a (L,R)-lifting operation φ consists of a family of functions φj,k indexed by vertical arrows
j : A 7→ B in L and k : X 7→ Y in R, which assign to each commuting square

UA V X

UB V Y

s

Uj V k

t

φj,k(s, t)

a diagonal filler φj,k(s, t) : UB → V X, as shown above, making both triangles commute.
These diagonal fillers are required to satisfy:

⋄ Horizontal compatibility: the diagonal fillers are natural in the cells of L and R.

UA UC V X

UB UD V Y

Ur0

Ui

s

Uj V k

Ur1

φj, k

t

=
UA V X

UB V Y

s ◦Ur0

Ui V kφi, k

t ◦Ur1

Naturality in L says that given a morphism (r0, r1) : i→ j in L1, we have the equality
of diagonals as depicted above; this means that φj, k(s, t) ◦ Ur1 = φi, k(s ◦ Ur0, t ◦ Ur1).
Naturality in R gives a corresponding condition on the right.
⋄ Vertical compatibility: the diagonal fillers respect vertical composition in L and R.

UA V X

UB

UC V Y

s

Ui

V k

φi,k

Uj

φj,k

t

=

UA V X

UB

UC V Y

s

Ui

V k

Uj

φj ◦ i, k

t

Respecting vertical composition in L says that given a composable pair of vertical
morphisms i : A 7→ B and j : B 7→ C in L, we have the equality of the main diagonals
as depicted above; this means that φj ◦ i, k(s, t) = φj, k(φi, k(s, t ◦ Uj), t). Respecting the
composition in R gives a corresponding condition but with a composable pair of vertical
morphisms in R.

A lifting structure (L, φ,R) consists of a pair of concrete double functors U : L→ Sq(C)
and V : R→ Sq(C) equipped with a (L,R)-lifting operation φ; this forms the basic data
of an algebraic weak factorisation system (see Section 1.4). The double functors U and V
are left implicit in the notation for a lifting structure.
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1.3. Double categories of lifts. In this subsection, we recall the definitions the double
categories RLP(J) and LLP(J) given the data of a double functor W : J → Sq(C). We
call these the double category of right lifts and the double category of left lifts, respectively
(names for these double categories do not seem to appear in the literature). Originally the
notation J⋔⋔ for RLP(J) and ⋔⋔J for LLP(J) was used by Bourke and Garner [6, Section 6.1],
however we instead follow the notation1 later introduced by Bourke [5, Section 2.2].

The double category of right lifts against J, denoted RLP(J) = ⟨C,RLP(J)⟩, is defined
as follows. The objects and horizontal morphisms are given by the objects and morphisms
of C. A vertical morphism consists of a pair (f, φ) where f : A→ B is a morphism in C,
and φ is a (J,V2)-lifting operation on the cospan

J Sq(C) V2W f

where V2 is the free double category containing a vertical morphism. Therefore, a
component of a vertical morphism (f, φ) : A 7→ B may be depicted as below.

WX A

WY B

s

Wj f

t

φj(s, t)

A cell (f, φ)→ (g, ψ) consists of a commutative square (h, k) : f → g in C which commutes
with the lifting operations, in the sense that we have equality of the diagonals as depicted
below; this means that h ◦ φj(s, t) = ψj(hs, kt).

WX A C

WY B D

Wj

s h

f g

t

φj

k

=
WX C

WY D

hs

Wj gψj

kt

Finally, given a composable pair of vertical morphisms (f, φ) : A 7→ B and (g, ψ) : B 7→ C,
their composite (g◦f, θ) : A 7→ C has lifting operation θj(s, t) = φj(s, ψj(fs, t)) as depicted
below.

WX A

B

WY C

s

Wj

f

g

t

ψj

φj

This completes the description of the double category RLP(J). There is a concrete
double functor RLP(J)→ Sq(C) which assigns a vertical morphism (f, φ) to f , and there
is a canonical lifting structure (J, can,RLP(J)). The double category RLP(J) plays an
important role is characterising several double categories of interest (see Section 2.2).

1To avoid confusion, we note that there is a minor typographical error in the final paragraph of [5, p.6]
in which RLP(L) should be used instead of LLP(L), and LLP(R) should be used instead of RLP(R);
all other occurrences in the paper remain correct.
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The double category of left lifts against J, denoted LLP(J) = ⟨C,LLP(J)⟩, is defined in
a dual way. A vertical morphism consists of a pair (f, φ) where f : A→ B is a morphism
in C, and φ is a (V2, J)-lifting operation on the cospan below.

V2 Sq(C) Jf W

Therefore, a component of a vertical morphism (f, φ) may be depicted as below.

A X

B Y

f

s

Wkφk(s, t)

t

There is a concrete double functor LLP(J)→ Sq(C) given by (f, φ) 7→ f , and there is a
canonical lifting structure (LLP(J), can, J).

Given a lifting structure (L, φ,R) on the cospan of double functors (1), there are
canonically induced double functors

φl : L −→ LLP(R) φr : R −→ RLP(L)

where on vertical morphisms we have φl(j) = (Uj, φ) and φr(k) = (V k, φ).

1.4. Algebraic weak factorisation systems. In this subsection, we introduce the
reformulation of an algebraic weak factorisation system (awfs) due to Bourke [5].

An algebraic weak factorisation system on the category C is a lifting structure (L, φ,R)
on a cospan of concrete double functors

L Sq(C) RU V

such that the following two axioms hold:
(1) Axiom of lifting: the induced double functors φl : L→ LLP(R) and φr : R→ RLP(L)

are invertible;
(2) Axiom of factorisation: each morphism f : A→ B in C admits a factorisation

A X B
U1f1 V1f2

such that (U1f1, 1B) : f → V1f2 is a universal arrow from f to V1, or equivalently, such
that (1A, V1f2) : U1f1 → f is a universal arrow from U1 to f .

An orthogonal factorisation system is an algebraic weak factorisation system (L, φ,R)
on C such that the underlying functors U1 : L1 → C2 and V1 : R1 → C2 are fully faithful.

A morphism of algebraic weak factorisation systems (F,G) : (L, φ,R)→ (L′, φ′,R′) on
a category C consists of a commutative diagram of double functors

L Sq(C) R

L′ R′

U

F

V

G
U ′ V ′

such that φj,Gk = φ′
Fj,k for all vertical morphisms j ∈ L and k ∈ R′.

9



2. The double category of delta lenses

In this section, we recall the notion of delta lens [18, 26], and construct a thin double
category Lens of categories, functors, and delta lenses [14]. In Theorem 4, we show that
the double category of delta lenses is isomorphic to the double category RLP(J) of right
lifts for a small double category J. We also prove that Lens has tabulators, and use this to
show that a delta lens is equivalent to a commutative diagram of functors

X A

B

φ

fφ
f

where φ is bijective-on-objects and fφ is a discrete opfibration.

2.1. Delta lenses and examples. In this subsection, we recall the definition of delta
lens, consider some examples, and construct the thin double category Lens of delta lenses.

Definition 1. A delta lens (f, φ) : A 7→ B is a functor f : A→ B equipped with a choice

(a ∈ A, u : fa→ b ∈ B) 7−→ φ(a, u) : a→ a′ ∈ A

of lifts such that the following axioms hold:
(DL1) fφ(a, u) = u;

(DL2) φ(a, 1fa) = 1a;

(DL3) φ(a, v ◦ u) = φ(a′, v) ◦ φ(a, u).

The composite of delta lenses (f, φ) : A 7→ B and (g, ψ) : B 7→ C is given by the pair
(gf, θ) : A 7→ C where θ(a, u) = φ(a, ψ(fa, u)). Categories, functors, and delta lenses form
a thin double category Lens = ⟨Cat,Lens⟩ whose cells are commutative squares of functors

A C

B D

h

(f, φ) (g, ψ)

k

which preserve the chosen lifts, that is, such that hφ(a, u) = ψ(ha, ku). There is a concrete
double functor V : Lens→ Sq(Cat) which sends each delta lens to its underlying functor.

Example 2. A functor f : A → B is a discrete opfibration for each object a ∈ A and
morphism u : fa → b in B, there exists a unique morphism w : a → a′ in A such that
fw = u. Therefore, each discrete opfibration admits a unique delta lens structure (in fact,
it is a split opfibration). Conversely, the underlying functor of a delta lens (f, φ) : A 7→ B

is a discrete opfibration if φ(a, fw) = w holds for all w : a → a′ in A. The discrete
opfibrations are precisely the horizontal morphisms in Lens which have a companion [23].

Example 3. A split opfibration is precisely a delta lens whose chosen lifts are opcartesian.

Let DOpf = ⟨Cat,DOpf⟩ and SOpf = ⟨Cat, SOpf⟩ denote the restrictions of the double
category Lens determined by the discrete opfibrations and split opfibrations, respectively.
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2.2. Generating the double category of delta lenses. In this subsection, we show
that there is a small double category J (a category internal to Cat) such that the double
category Lens of delta lenses is isomorphic to the double category RLP(J) of right lifts.
We also demonstrate analogous statements for the double categories DOpf and SOpf. Our
proofs mirror closely that given for lalis by Bourke and Garner [6, Proposition 19].

Theorem 4. There is an isomorphism Lens ∼= RLP(J) for a small double category J.

Proof. We define a small double category Jlens and a double functor W : Jlens → Sq(Cat)
such that RLP(Jlens) ∼= Lens. The objects of Jlens are the ordinals 1, 2, and 3, and its
horizontal morphisms are order-preserving maps; the double functor W acts on these
via the inclusion ∆ ↪→ Cat. The vertical morphisms are freely generated by morphisms
i : 1→ 2 and j : 2→ 3. The functor W acts on vertical morphisms by Wi = δ1 : 1→ 2
and Wj = δ2 : 2→ 3. The cells of J are freely generated by the following three cells.

1 2

2 3

δ0

i (a) j

δ0

1 1

2 1
i (b) id

!

1 1

2

2 3

i (c)
i

j

δ1

Given a functor f : A→ B, we see that:
⋄ To equip f with a Wi-lifting operation is to give, for every a ∈ A and u : fa→ b in B,

a morphism φ(a, u) : a→ a′ such that fφ(a, u) = u, that is, (DL1) is satisfied.
⋄ To equip f with a Wj-lifting operation is to give, for each w : a→ a′ in A and v : fa′ → b

in B, a morphism γ(w, v) : a′ → a′′ such that fγ(w, v) = v; compatibility with (a) forces
γ(w, v) = φ(a′, v).
⋄ Compatibility with (b) and (c) forces that (DL2) and (DL3), respectively, are satisfied.
Therefore, a vertical morphism in RLP(Jlens) is precisely a delta lens. The diagram below
shows the composition of delta lenses coincides with vertical composition in RLP(Jlens).

1 A

B

2 C

a

Wi

(f, φ)

(g, ψ)

u

ψ(fa, u)

φ(a, ψ(fa, u))

Finally, the following diagram demonstrates that the cells in RLP(Jlens) and Lens agree.

1 A C

2 B D

Wi

a

(f, φ)

h

(g, ψ)

u

φ(a, u)

k

=
1 C

2 D

ha

Wi (g, ψ)

ku

ψ(ha, ku)

This completes the description of the isomorphism RLP(Jlens) ∼= Lens. □

11



Since delta lenses are closely related to both discrete opfibrations, and split opfibrations,
it is natural to wonder if the double categories DOpf and SOpf are also isomorphic to
the double category RLP(J) of right lifts for an appropriate small double category J. We
now show that this is the case. While we expect that following results are known to the
experts, we could not find any explicit reference in the literature.

Proposition 5. There is an isomorphism DOpf ∼= RLP(J) for a small double category J.

Proof. Consider a thin double category Jdopf freely generated by the same data as Jlens in
the proof of Theorem 4, but with the following additional cell.

1 2

2 2

δ1

Wi (d) id

Given a delta lens (f, φ) : A 7→ B, compatibility with (d) requires that φ(a, fw) = w, which
implies that the underlying functor is a discrete opfibration (see Example 2). Therefore,
we have an isomorphism DOpf ∼= RLP(Jdopf) as required. □

Remark 6. Consider the small double category J′ obtained by restricting Jdopf to the pair
of objects 1 and 2, the vertical morphism i : 1→ 2, and the cell (d). We see that to equip
a functor f : A→ B with a Wi-lifting operation compatible with (d) is precisely to say
that it is a discrete opfibration (see Example 2). Thus, we also have DOpf ∼= RLP(J′).

Proposition 7. There is an isomorphism SOpf ∼= RLP(J) for a small double category J.

Proof. Consider the thin double category Jsopf with the same data as Jlens in the proof of
Theorem 4, but with an additional vertical morphism k : 2→ 3 such that Wk = δ1, and
the following two additional cells.

1 2

2 3

δ1

i (e) k

d2

2 3

3 3

δ1

k (f) id

Given a delta lens (f, φ) : A 7→ B, to equip with a lifting operation against Wk : 2→ 3 is to
give, for each morphism w : a→ a′ in A and each pair of morphisms (u, v) : fa→ b→ fa′

in B such that v ◦ u = fw, a composable pair of morphisms ψ(w, u, v) : a → a′′ and
θ(w, u, v) : a′′ → a′ such that θ(w, u, v) ◦ ψ(w, u, v) = w, as well as fψ(w, u, v) = u

and fθ(w, u, v) = v. Compatibility with (e) requires that ψ(w, u, v) = φ(a, u), while
compatibility with (f) requires that the morphisms θ(w, u, v) are unique such that the
equations hold—that is, the morphisms φ(a, u) are opcartesian and (f, φ) is a split
opfibration (see Example 3). Therefore, we have SOpf ∼= RLP(Jsopf) as required. □

Remark 8. Since Cat is a locally presentable category, these characterisations of the double
categories Lens, DOpf and SOpf imply the existence a corresponding awfs [6] given by
the lifting structure (LLP(RLP(J)), can,RLP(J)) on Cat [5]. An awfs of this form is said
to be cofibrantly generated by a small double category J.
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2.3. A diagrammatic approach to delta lenses. In this subsection, we recall that
delta lenses are equivalent to certain commutative diagrams in Cat [11]. We call this the
diagrammatic approach to delta lenses, in contrast to the axiomatic approach in Definition 1.
We show that the double category Lens has tabulators (Proposition 10), which instils a
universal property on the diagrammatic presentation of a delta lens. In Proposition 12
show that the equivalence between the axiomatic and diagrammatic approaches extends
to a formal equivalence of double categories Lens ≃ Lensd.

The notion of a tabulator was first introduced by Grandis and Paré [22] as a certain
kind of double-categorical limit. Here we use a slightly weaker definition (sometimes called
a 1-tabulator) which states that a double category D = ⟨D0,D1⟩ has tabulators if the
functor id : D0 → D1 has a right adjoint [32]. To prove that Lens has tabulators, we will
use the following basic lemma.

Lemma 9. If f : X → A is bijective-on-objects and g : X → B is a discrete opfibration,
then ⟨f, g⟩ : X → A×B is a monomorphism in Cat.

Proposition 10. The double category Lens has tabulators.

Proof. Given a delta lens (f, φ) : A → B, we must construct a cell in Lens with the
following boundary.

Λ(f, φ) A

Λ(f, φ) B

πA

id (f, φ)

πB

Let Λ(f, φ) be wide subcategory of A determined by the chosen lifts, that is, morphisms of
the form φ(a, u). Identities the composition are well-defined by the axioms of a delta lens.
The functor πA : Λ(f, φ)→ A is the identity-on-objects inclusion of the wide subcategory,
and we let πB = fπA; this clearly defines a cell in Lens with the required boundary.
Moreover, the functor πB is a discrete opfibration, since for each object a ∈ Λ(f, φ)
and morphism u : fa → b in B (where fa = πBa), there exists a unique morphism
φ(a, u) : a→ a′ in Λ(f, φ) such that πBφ(a, u) = u.

Given a cell in Lens as below, we must now construct a unique functor j : X → Λ(f, φ)
such that πAj = h (which implies that πBj = k).

X A

X B

h

id (f, φ)

k

By the definition of a cell in Lens, we have that fh = k and φ(hx, ku) = hu for all
morphisms u : x → y in X. We define j : X → Λ(f, φ) by jx = hx on objects and
j(u : x→ y) = φ(ha, ku) on morphisms. Clearly πAj = h, and the uniqueness of j follows
by Lemma 9, since πA is identity-on-objects and πB is a discrete opfibration. □

13



Therefore, tabulator in Lens constructs for each delta lens (f, φ) : A 7→ B an identity-
on-objects functor πA : Λ(f, φ)→ A such that fπA is a discrete opfibration.

Lemma 11. Given a commutative diagram of functors

X A

B
fψ

ψ

f

such that ψ is bijective-on-objects and fψ is a discrete opfibration, there exists a delta lens
(f, φ) : A 7→ B together with an isomorphism X ∼= Λ(f, φ).

Proof. Since fψ : X → B is a discrete opfibration, it admits a unique delta lens structure;
we denote its unique choice of lifts by (x ∈ X, u : fψx→ b ∈ B) 7−→ θ(x, u) : x→ x′.

Since ψ is bijective-on-objects, we may then define a delta lens (f, φ) : A 7→ B where
φ(a, u) = ψθ(ψ−1a, u). The axiom (DL1) of a delta lens holds by construction. By
uniqueness of lifts of the discrete opfibration fψ and functoriality of ψ, we also have that
the axioms (DL2) and (DL3) of a delta lens are satisfied. Finally, since φ(ψx, fψu) =
ψθ(x, fψu) = ψu for all morphisms u : x→ y in X, we may apply Proposition 10 to obtain
a unique functor j : X → Λ(f, φ) which is easily shown to be invertible. □

Together Proposition 10 and Lemma 11 imply that delta lenses are the same as certain
commutative triangles in Cat; we now extend this to an equivalence of double categories.

We define a diagrammatic delta lens (f, φ) : A 7→ B to be a commutative diagram in Cat,
as on the left of (2), such that φ is bijective-on-objects and fφ is a discrete opfibration.
The composite of diagrammatic delta lenses (f, φ) : A 7→ B and (g, ψ) : B → C is given by
(gf, φπX) : A 7→ C, as in the middle of (2), where Z is the pullback of fφ along ψ; this is
well-defined since bijective-on-objects functors and discrete opfibrations are stable under
pullback. Categories, functors, and diagrammatic delta lenses form a thin (pseudo) double
category Lensd, in which a cell (h, k) : (f, φ)→ (g, ψ) is given by a commutative diagram
as on the right of (2), where the functor j : X → Y is unique, if it exists, by Lemma 9.

X A

B
fφ

φ

f

Z X A

Y B

C

πX

πY

⌟

φ

fφ f

ψ

gψ
g

X Y

A C

B D

j

φ ψ

h

f g

k

(2)

Proposition 12. There is an equivalence of double categories Lens ≃ Lensd.

Proof (Sketch). By Lemma 11, we may construct a (strict) double functor Lensd → Lens.
By Proposition 10, we may construct a (pseudo) double functor Lens → Lensd using
tabulators. We may then check that these double functors are mutually inverse, up to
natural isomorphism. □

Henceforth, we will not distinguish between delta lenses and diagrammatic delta lenses.
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3. The double category of twisted coreflections

In this section, we introduce a special kind of split coreflection that we call a twisted
coreflection. We begin by recalling basic facts about initial functors and split coreflections.
We then define twisted coreflections, and construct the double category TwCoref of
categories, functors, and twisted coreflections. In Theorem 28, we prove that a split
coreflection is a twisted coreflection if and only if it satisfies a certain pushout condition.
Moreover, we show that twisted coreflection is equivalent to a pushout square in Cat

A0 A

X B

ιA

f ′

⌜
f

π

where A0 is a discrete category, ιA is identity-on-objects, and f ′ is an initial functor.

3.1. Initial functors and split coreflections. In this subsection, we recall the definition
of an initial functor and a split coreflection, and collect some useful results.

Definition 13. A functor f : A→ B is called initial if, for each object b ∈ B, the comma
category f/b is connected.

Initial functors are closed under composition and stable under pushout. We define
IFun = ⟨Cat, IFun⟩ to be the double category obtained from Sq(Cat) by restricting the
vertical morphisms to initial functors.

Definition 14. A split coreflection (f ⊣ q, ε) : A 7→ B is a functor f : A→ B equipped
with a functor q : B → A and a natural transformation ε : fq ⇒ 1B such that qf = 1A,
q · ε = 1q, and ε · f = 1f .

In other words, a split coreflection is a coreflective adjunction f ⊣ q in which the unit is
required to be an identity natural transformation. A split coreflection is also commonly
called a left-adjoint-right-inverse (or lari) in the literature. The underlying left adjoint of
a split coreflection is both an initial functor and fully faithful.

The composite of split coreflections (f ⊣ q, ε) : A 7→ B and (g ⊣ p, ζ) : B 7→ C is given
by the triple (gf ⊣ pq, θ) : A 7→ C where the component of θ : gfqp ⇒ 1C at an object
x ∈ C is given by the morphism ζx ◦ gεpx. Categories, functors, and split coreflections
form a thin double category Coref = ⟨Cat,Coref⟩ in which a cell with boundary

A C

B D

h

(f ⊣ q, ε) (g ⊣ p, ζ)

k

=
A C

B D

h

f ⊣ g ⊣

k

q p

exists if kf = gh, hq = pk, and k · ε = ζ · k. There is a concrete double functor
Coref → Sq(Cat), which factors through the double category IFun, that sends each split
coreflection to its underlying left adjoint.
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It is well known that split monomorphisms are stable under pushout and split epimor-
phisms are stable under pullback. An analogous result also holds for split coreflections.

Lemma 15. The functor dom: Coref → Cat is a fibration and an opfibration.

Proof (Sketch). Given a split coreflection (f ⊣ q, ε) : A 7→ B and functors h : A→ C and
k : D → A, we may construct the following morphisms in Coref, where B +A C is the
pushout of h along f , and D ×A B is the pullback of k along q.

A C

B B +A C

h

f ⊣
⌜
ϖC ⊣

ϖB

q [hq, 1C ]

D A

D ×A B B

k

⟨1D, fk⟩ ⊣ f ⊣

πB

πD

⌝
q (3)

Constructing the corresponding counits of the split coreflections ϖC ⊣ [hq, 1C ] and
⟨1D, fk⟩ ⊣ πD involves using the 2-dimensional universal property of the pushout and pull-
back in Cat, respectively. Showing that these morphisms are opcartesian and cartesian lifts,
respectively, for the functor dom: Coref → Cat also uses these universal properties. □

Remark 16. Bijective-on-objects functors and fully faithful functors are stable under
pullbacks and pushouts along arbitrary functors in Cat. Moreover, given a commutative
square kf = gh in Cat, if f and g are bijective-on-objects and h and k are fully faithful,
then the square is a pullback.

Therefore, if the functor h : A → C in (3) is bijective-on-objects, then the functor
ϖB : B → B +A C is also bijective-on-objects, and the diagram hq = [hq, 1C ]ϖB is also a
pullback square by pullback pasting. In other words, opcartesian lifts (or pushouts) of a
split coreflection along a bijective-on-objects functor are also cartesian lifts (or pullbacks).

Definition 17. Let (−)0 : Cat→ Cat denote the discrete category comonad, which sends
each category A to the corresponding discrete category A0 with the same set of objects,
and whose counit component is given by the identity-on-objects functor ιA : A0 → A.

A category X has a chosen initial object in each connected component if there is a split
coreflection from a discrete category. The following result tells us that it is equivalent to
ask for an initial functor from a discrete category.

Lemma 18. Let A0 be a discrete category. A functor f : A0 → X initial if and only if
(f ⊣ q, ε) : A0 7→ X is a split coreflection.

This lemma implies that each initial functor from a discrete category is fully faithful. We
may also extend the result to a statement about the morphisms between initial functors.

Lemma 19. Let A0 and C0 be discrete categories. There is a bijective correspondence
between cells in IFun on the left below and cells in Coref on the right below.

A0 C0

B D

h0

f g

k

↭
A0 C0

B D

h0

f ⊣ g ⊣

k

q p
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3.2. Twisted coreflections. In this section, we introduce the new notion of a twisted
coreflection as a split coreflection with a certain property. We demonstrate that twisted
coreflections are closed under composition, and construct the thin double category TwCoref
of categories, functors, and twisted coreflections.

Definition 20. A twisted coreflection is a split coreflection (f ⊣ q, ε) : A 7→ B such that if
q(u : x→ y) ̸= 1, there exists a unique morphism qu : x→ fqx such that qu ◦ εx = 1fqx
and u = εy ◦ fqu ◦ qu.

The key difference between twisted coreflections and split coreflections is the treatment
of naturality squares. The two types of naturality square for a twisted coreflection (f ⊣ q, ε)
are depicted below: qu ̸= 1 on the left, and qu = 1 on the right.

fqx fqy

x y

fqu

εx εy

u

∃! qu

fqx fqy

x y

εx εy

u

Unlike split coreflections, which occur frequently in category theory, it is difficult to find
naturally occurring examples of twisted coreflections. In Section 3.3, we provide a method
for constructing every example of a twisted coreflection. For the moment we demonstrate
a few simple examples.

Example 21. A split coreflection (f ⊣ q, ε) : A0 7→ X is a twisted coreflection, since the
right adjoint sends every morphism to an identity morphism (see also Lemma 18).

Example 22. The functor δ2 : 2→ 3 admits a unique twisted coreflection structure, with
right adjoint given by σ1 : 3→ 2 where σ1(0) = 0 and σ1(1) = σ1(2) = 1. Therefore, every
vertical morphism in Jlens admits a twisted coreflection structure (see Theorem 4).

Example 23. Consider the full embedding of the interval 2 into the category B generated
by the directed graph as illustrated.

2 • •

B • • •

... ...
r

s u

where r ◦ s = 1

This functor admits the structure of a twisted coreflection uniquely. The morphisms u
and ur in B are sent by the right adjoint to the non-identity morphism in 2, and we can
easily check that the conditions for a twisted coreflection hold.

Proposition 24. Twisted coreflections are closed under composition.

Proof. Given a pair of twisted coreflections (f ⊣ q, ε) : A 7→ B and (g ⊣ p, ζ) : B 7→ C, we
want to show that the composite (gf ⊣ pq, θ) : A→ C of their underlying split coreflections
(as defined in Section 3.1) is also a twisted coreflection. There are two parts of the proof:
existence and uniqueness.
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Given a morphism u : x→ y in C such that qpu ≠ 1, and thus pu ̸= 1, there exists a
morphism gqpu ◦ pu : x→ gfqpx which satisfies the required conditions, as shown in the
diagram below. It remains to be shown that this is the unique morphism such that the
required conditions hold.

gfqpx gfqpy

gpx gpy

x y

gfqpu

gεpx gεpy

gpu

ζx

gqpu

ζy

u

pu

(4)

Consider a morphism v : x → gfqpx such that the equations v ◦ (ζx ◦ gεpx) = 1 and
u = (ζy ◦ gεpy) ◦ gfqpu ◦ v are satisfied. We must show that v = gqpu ◦ pu.

Applying the functor p : C → B to the morphism v we find that pv ◦ εpx = 1 and
pu = εpy ◦ fqpu ◦ pv. Since (f ⊣ q, ε) : A 7→ B is a twisted coreflection, we may use
uniqueness to conclude that pv = qpu, and therefore gpv = gqpu. Since (g, p, ζ) : B 7→ C

is twisted coreflection, there exists a unique morphism pv : x→ gpx such that pv ◦ ζx = 1
and v = gpv ◦ pv = gqpu ◦ pv as depicted below.

gpx gfqpx

x gfqpx

gpv

ζx

v

pv (5)

Using the diagrams (4) and (5) and the assumptions on v, we have that:

ζy ◦ gpu ◦ pv = ζy ◦ gεpy ◦ gfqpu ◦ gqpu ◦ pv

= ζy ◦ gεpy ◦ gfqpu ◦ v

= u.

Since we also have that pv ◦ ζx = 1 by definition, we may use uniqueness to conclude that
pv = pu. Thus, we have v = gpv ◦ pv = gqpu ◦ pu as required, completing the proof. □

Let TwCoref = ⟨Cat,TwCoref⟩ denote the double category obtained from Coref by
restricting the vertical morphisms to twisted coreflections. There is a concrete double
functor U : TwCoref → Sq(Cat) which sends a twisted coreflection (f ⊣ q, ε) to f .

3.3. Diagrammatic approach to twisted coreflections. In this section, we show that
twisted coreflections are equivalent to certain commutative diagrams in Cat, analogous
to the results in Section 2.3 for delta lens. We call this the diagrammatic approach to
twisted coreflections, in contrast to the approach taken in Definition 20. The diagrammatic
approach is centred around unpacking a particular pushout of functors in Construction 25.
In Proposition 26, we show that pushouts of initial functors from discrete categories along
bijective-on-objects functors yields a twisted coreflections, and in Theorem 28, we identify
a simple criterion for a split coreflection to be a twisted coreflection. This culminates in
an equivalence of double categories in Proposition 30.
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Construction 25. We provide an explicit description of the following pushout in Cat,
where f is fully faithful and ιA is the counit component of the discrete category comonad.

A0 A

X B

ιA

f

⌜
f ′

π

We first describe the objects and morphisms of the category B. Since ιA : A0 → A is
identity-on-objects, and these are stable under pushout, the category B has the same
objects as X. The morphisms x→ y in B are one of the following two sorts:

(S1) a morphism u : x→ y in X;
(S2) a formal sequence of morphisms, as below, with u and v in X, and w ̸= 1 in A.

a a′

x fa fa′ y

w

u v
(6)

The identity morphism on an object x in B is simply the identity morphism 1x in X

and is a morphism of sort (S1). The composition of morphisms in B is given as follows.
• Given a composable pair of morphisms of sort (S1), their composite is again a morphism

of sort (S1) and is determined by their composition in X.
• Given a composable pair of morphisms where one of sort (S1) and the other of sort (S2),

their composite is of sort (S2), and is determined by composition in X.
• The composition a pair of morphisms of sort (S2), as depicted below, is more subtle.

a1 a′
1 a2 a′

2

x fa1 fa′
1 y fa2 fa′

2 z

w1 w2

u1 v1 u2 v2
(7)

Since f : A0 → X is fully faithful, we have that the composite u2 ◦ v1 is an identity
morphism in X, and thus “disappears”, leaving the following composable sequence.

a1 a′
1 = a2 a′

2

x fa1 fa′
2 z

w1 w2

u1 v2

We may now consider the morphism w2 ◦ w1, which is determined by composition in A.
If w2 ◦ w1 = 1, then the composite (7) is of sort (S1) and is given by the morphism
v2 ◦ u1 : x→ z in X. If w2 ◦ w1 ≠ 1, then the composite (7) is of sort (S2), and is given
by the formal sequence of morphisms below.

a1 a′
2

x fa1 fa′
2 z

w2 ◦w1

u1 v2

The identity-on-objects functor π sends each morphism in X to the corresponding
morphism of sort (S1) in B. The fully faithful functor f ′ has action on objects a 7→ fa,
sends each morphism w ̸= 1 in A to the corresponding morphism of sort (S2) in B, and
each identity on a ∈ A to the identity on fa ∈ B of sort (S1).
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Using this explicit description of the pushout, we now prove a certain commutative
diagram in Cat give rise to twisted coreflections, analogous to Lemma 11 for delta lenses.

Proposition 26. Given a pushout diagram of functors

A0 A

X B

ιA

f

⌜
f ′

π

(8)

such that ιA is the counit component of the discrete category comonad at A and f is an
initial functor, there exists a twisted coreflection (f ′ ⊣ q′, ε′) : A 7→ B together with an
isomorphism X ∼=

∑
a∈A0 q

′−1{a}.

Proof. We use the same notation as in Construction 25, where we provided a description
of the category B and the functors f ′ : A→ B and π : X → B.

By Lemma 18, there is a (unique) split coreflection (f ⊣ q, ε) : A0 7→ X, and since
split coreflections are stable under pushout by Lemma 15, there is a split coreflection
(f ′ ⊣ q′, ε′) : A 7→ B such (8) underlies a cell in Coref. Since the pullback of q′ : B → A

along the functor ιA : A0 → A yields the coproduct of the fibres of q′, it follows immediately
by Remark 16 that X ∼=

∑
a∈A0 q

′−1{a}.
We now explicitly define the split coreflection (f ′ ⊣ q′, ε′) : A 7→ B, and show that it

satisfies the conditions of twisted coreflection. The functor q′ : B → A acts the same
as q : X → A0 on objects and morphisms of sort (S1), while sending a morphism (6) of
sort (S2) to w : a → a′ in A. The natural transformation ε′ : f ′q′ ⇒ 1B has the same
components as ε : fq ⇒ 1X . Explicitly, the component of ε′ at an object x in B is given
by εx : fqx→ x which is a morphism of sort (S1) in B.

To show that this is a twisted coreflection, consider a morphism (6) of sort (S2), which
is precisely a morphism which is sent by q′ to a non-identity morphism w : a→ a′ in A.
Naturality states that the following two morphisms of sort (S2) are equal.

a a′

fqx fa fa′ y

w

u ◦ εx v
= a a′

fqx fa fqy y

w

εy

This implies that qx = a, qy = a′, and v = εy for each morphism (6). Moreover, if we
denote the morphism (6) by s : x→ y, then there is a unique morphism u : x→ fa such
that u ◦ εx = 1fa, and s = v ◦ w ◦ u = εy ◦ q′s ◦ u. Therefore, (f ′ ⊣ q′, ε′) is a twisted
coreflection as required. □

Example 27. Given a category A, for each object a ∈ A, choose a category Fa with an
initial object 0a ∈ Fa. Let X = ∑

a∈A0 Fa, and let f : A0 → X denote the initial functor
which selects the initial object in each connected component of X, that is, fa = 0a. Then
the pushout (8) glues each category Fa to A via the identification a ∼ 0a, yielding the
category B and a twisted coreflection (f ′ ⊣ q′, ε′) : A 7→ B.
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Proposition 26 shows how to obtain twisted coreflections as certain pushout diagrams
in Cat. We now show that every twisted coreflection arises in this way. Given a split
coreflection (f ⊣ q, ε) : A 7→ B, we may construct the pullback (9) along ιA by Lemma 15.

A0 A

∑
a∈A0

q−1{a} B

ιA

f̂ ⊣
⌝

f ⊣

π̂

q̂ q (9)

Theorem 28. A split coreflection (f ⊣ q, ε) : A 7→ B is a twisted coreflection if and only
if the commutative diagram (9) is a pushout.

Proof. By Proposition 26 we have that if (9) is a pushout, then (f ⊣ q, ε) is a twisted
coreflection. It remains to be shown that if (f ⊣ q, ε) is a twisted coreflection, then (9) is
a pushout of (f̂ ⊣ ĝ, ε̂) along ιA, in the sense of opcartesian lift, as in Lemma 15.

We may construct the following diagram in Cat from (9) by taking the pushout along ιA
and using the universal property to obtain the identity-on-objects functor [π̂, f ] : B′ → B.

A0 A A

∑
a∈A0

q−1{a} B′ B
⌜

ιA

f̂ ⊣ f ′ ⊣ f ⊣
π

q̂

π̂

q′

[π̂, f ]

q (10)

Since (f ′ ⊣ q′, ε′) : A → B′ is a twisted coreflection by Proposition 26, we only need to
show that comparison functor [π̂, f ] : B′ → B is an isomorphism, and since this functor is
already identity-on-objects, it suffices to show that it is fully faithful.

Using Construction 25, the category B′ may be described as follows. The objects of B′

are the same as those of B. The morphisms x→ y of B′ are one of the following two sorts:
(S’1) a morphism u : x→ y in B such that qu = 1;
(S’2) a sequence of morphisms, as below, with u, v ∈ B and w ∈ A such that qu = 1,

qv = 1, and w ̸= 1.

a a′

x fa fa′ y

w

u v
(11)

The functor q′ : B′ → A sends morphisms of sort (S’1) to identities, as determined by q,
and morphisms of sort (S’2) to their corresponding non-identity component in A. Since
(f ′ ⊣ q′, ε′) is a twisted coreflection, it follows that for each morphism (11) of sort (S’2),
the equations u ◦ εx = 1fa and v = εy are satisfied.

The identity-on-objects functor [π̂, f ] : B′ → B sends morphisms of sort (S’1) to them-
selves, and morphisms (11) of sort (S’2) to v ◦ fw ◦ u : x→ y. This functor is fully faithful
if and only if for each morphism u : x→ y in B such that qu ̸= 1, there exists a unique
morphism qu : x→ fqx such that qu◦εx = 1fqx and u = εy ◦fqu◦ qu. But this is precisely
what it means for (f ⊣ q, ε) : A 7→ B to be a twisted coreflection, completing the proof. □
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Corollary 29. The inclusion of twisted coreflections into split coreflections admits a right
adjoint.

TwCoref Coref⊤

Proof. The right adjoint sends a split coreflection (f ⊣ q, ε) : A 7→ B to the twisted
coreflection (f ′ ⊣ q′, ε′) : A 7→ B′ defined in the diagram (10) by first taking the pullback
along ιA and then taking the pushout along ιA as described in Remark 16. □

Together Proposition 26 and Theorem 28 tell us that twisted coreflections are the same
as certain pushout diagrams in Cat. This provides a convenient way to work with twisted
coreflections, and also explains the unusual property given in Definition 20. Moreover, we
find that every example of a twisted coreflection arises as in Example 27.

We define a diagrammatic twisted coreflection (f, f ′, π) : A 7→ B to be a pushout diagram
in Cat, as on the left of (12), such that f ′ is an initial functor and where ιA is the component
of the discrete category comonad on A, and thus identity-on-objects. The composite of
diagrammatic twisted coreflections (f, f ′, πf) : A 7→ B and (g, g′, πg) : B 7→ C is given by
(gf, hf ′, πgf) : A 7→ C, as on the right of (12), where B0 = X0 since πf is identity-on-
objects, Z is the pushout of ιX along g′, and πgf is induced by the universal property of
the pushout. Composition is well-defined by pasting for pushouts.

A0 A

X B

ιA

f ′

⌜
f

π

A0 A

B0 X B

Y Z C

ιA

f ′

⌜
f

ιX

g′

⌜

πf

h

⌜
g

πh

πg

πgf

(12)

Categories, functors, and diagrammatic twisted coreflections form a thin (pseudo) double
category TwCorefd, in which a cell (h, k) : (f, f ′, πf )→ (g, g′, πg) is given by a commutative
diagram below, where j : X → Y is unique, if it exists, as Y is a pullback by Proposition 26.

A0 A C

X B D

ιA

f ′

⌜

h

f g

πf k

=
A0 C0 C

X Y D

f ′

h0 ιC

g′

⌜
g

j πg

Proposition 30. There is an equivalence of double categories TwCoref ≃ TwCorefd.

Proof (Sketch). By Proposition 26 and Lemma 18, we may construct a (strict) double
functor TwCorefd → TwCoref. By Theorem 28, we may construct a (pseudo) double
functor TwCoref → TwCoref. We may then check that these double functors are mutually
inverse, up to natural isomorphism. □

Henceforth, a twisted coreflection (f ⊣ q, ε) will usually be understood by implicitly
choosing some equivalent diagrammatic twisted coreflection (f, f ′, π)
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4. The awfs of twisted coreflections and delta lenses

In this section, we prove that twisted coreflections and delta lenses form an algebraic
weak factorisation system on Cat. Our proof has three parts. First, we describe a lifting
operation on the following cospan of double functors.

TwCoref Sq(Cat) LensU V (13)

Second, we show that each functor admits a factorisation as a cofree twisted coreflection
followed by a free delta lens. Finally, we show that the induced double functors

TwCoref −→ LLP(Lens) and Lens −→ RLP(TwCoref)

are invertible. Throughout the proof, a typical twisted coreflection (f ⊣ q, ε) : A 7→ B and
delta lens (g, ψ) : C 7→ D will be depicted as commutative diagrams in Cat as follows.

A0 A

X B

ιA

f ′

⌜
f

π

Y C

D

ψ

gψ
g (14)

4.1. The lifting operation. In this subsection, we construct a lifting operation on the
cospan of double functors (13). We first recall the comprehensive factorisation system due
to Street and Walters [34] (see also Kelly [28, Section 4.7] for a small correction to the
original proof).

Lemma 31. The classes of initial functors and discrete opfibratons form an orthogonal
factorisation system on Cat.

Therefore, given a commutative square of functors, as depicted below, such that f is an
initial functor and g is a discrete opfibration, there exists a unique functor ℓ : B → C such
that ℓf = h and gℓ = k.

A C

B D

h

f g

k

ℓ

∃!

Next we recall a useful fact about bijective-on-objects functors and discrete categories.

Lemma 32. The functor f : A → B is bijective-on-objects if and only if the post-
composition function f∗ : Cat(X0, A)→ Cat(X0, B) between hom-sets is bijective for each
discrete category X0.

In other words, f : A→ B is a bijective-on-objects functor if and only if for each functor
g : X0 → B from a discrete category X0, there exists a unique functor ĝ : X0 → A such
that f ◦ ĝ = g.

A

X0 B

f

g

∃! ĝ
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Using these two facts about discrete opfibrations and bijective-on-objects functors we
can construct a lift of each twisted coreflection against a delta lens.

Proposition 33. Given a commutative square of functors (15) such that (f ⊣ q, ε) is a
twisted coreflection and (g, ψ) is a delta lens, there exists a functor j : B → C such that
jf = h and gj = k.

A C

B D

f

h

g

k

j (15)

Proof. Given a twisted coreflection (f ⊣ q, ε) : A 7→ B in “diagrammatic” form (f, f ′, π),
and a delta lens (g, ψ) : C 7→ D, we construct explicitly a functor j : B → C such that
jf = h and gj = k.

Using the presentation (14) of the twisted coreflection and delta lens as commutative
diagrams, by Proposition 26 and Lemma 11, we may depict the solid commutative square
(15) as follows.

Y

A0 A C

X B D

ψ

gψ
ιA

f ′

⌜

ĥ

h

f g

π k

Since ψ : Y → C is a bijective-on-objects functor and A0 is a discrete category, by
Lemma 32, there exists a unique functor ĥ : A0 → Y such that ψĥ = hιA, as shown by the
dashed arrow above.

Next, since f ′ is an initial functor and gψ is a discrete opfibration, by Lemma 31, there
exists a unique functor ℓ : X → Y such that ℓf ′ = ĥ and gψℓ = kπ, as shown by the
dashed arrow below.

A0 Y

X D

ĥ

f ′ gψ

kπ

ℓ

Finally, using the universal property of the pushout, we may construct the functor
j : B → C as follows; this is well-defined since ψℓf ′ = ψĥ = hιA.

A0 A

X B

Y C

f ′

ιA

⌜
f

h

π

ℓ

j

ψ

It is clear that jf = h by construction, and it is easy to check that gj = k by applying
the universal property of the pushout, thus completing the proof. □
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The lift of a twisted coreflection against a delta lens constructed in Proposition 33 uses
three separate universal properties: first the universal property of a bijective-on-objects
functor with respect to discrete categories, then the universal property of the comprehensive
factorisation system, and finally the universal property of the pushout. Unsurprisingly,
these universal properties allow one to show (with extensive, but straightforward, diagram-
chasing) that the chosen lifts satisfy the required horizontal and vertical compatibilities of
a lifting operation (see Section 1.2) with respect to TwCoref and Lens.

Theorem 34. The chosen lifts of a twisted coreflection against a delta lens, as constructed
in Proposition 33, define a (TwCoref,Lens)-lifting operation on the cospan (13).

4.2. The axiom of factorisation. In this subsection, we construct the factorisation of a
functor as a cofree twisted coreflection followed by a free delta lens.

Recall that split coreflections and split opfibrations form an algebraic weak factorisation
system (Coref,SOpf) on Cat. Each functor f : A → B factorises as a split coreflection
followed by a split opfibration via a certain comma category as shown below.

A f/B B⊤

As recalled in Lemma 31, the comprehensive factorisation system on Cat factorises each
functor as an initial functor followed by a discrete opfibration. Note that every split
coreflection has an underlying initial functor, and every discrete opfibration admits the
structure of a split opfibration uniquely. If the domain of the functor is a discrete category,
then these two factorisations coincide in the following sense.

Lemma 35. Each functor f : A0 → B from a discrete category factorises as a split
coreflection followed by a discrete opfibration via a coproduct of coslice categories as below.

A0
∑
a∈A0

fa/B B
If

⊤
Sf

Tf

The notation chosen for the functors If , Sf , and Tf is to remind us that they behave
like identity, source, and target maps of an internal category, since If(a) = (a, 1fa),
Sf(a, u : fa→ b) = a and Tf(a, u : fa→ b) = b.

Proposition 36. Each functor f : A→ B admits a factorisation as a twisted coreflection
followed by a delta lens.

Proof. Given a functor f : A→ B we may construct the following commutative diagram,
as in [15, Section 4.1], where f ′ = f ◦ ιA.

A0 A

∑
a∈A0 fa/B Ef

B B

ιA

If ′

⌜
Lf

f
Φf

Tf ′ Rf

(16)
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The functor f is precomposed with the counit component ιA of the discrete category
comonad to obtain a functor to which we apply the factorisation of Lemma 35. We then
take the pushout of the resulting initial functor If along the functor ιA to obtain the
functor Lf which the structure of a twisted coreflection structure by Proposition 26. Using
the universal property of the pushout, we obtain the functor Rf which has the structure
of a delta lens by Lemma 11, since precomposing with the bijective-on-objects functor Φf
yields the discrete opfibration Tf ′. □

Notation 37. Given the factorisation (16) of a functor f : A→ B constructed in Propo-
sition 36, we let (Lf, If ′,Φf) : A 7→ Ef denote the twisted coreflection structure on Lf

(given in “diagrammatic form”, as in (12), rather than “split coreflection form”, as in
Definition 20), and we let (Rf,Φf) : Ef 7→ B denote the delta lens structure on Rf . We
always fix a factorisation of f by choosing a particular pushout, denoted Ef .

The cospan of double functors (13) has an underlying cospan of functors between the
corresponding categories TwCoref and Lens of vertical morphisms and cells.

TwCoref Cat2 LensU1 V1

The axiom of factorisation of an algebraic weak factorisation system (see Section 1.4)
requires that either (Lf, 1B) : f → V1(Rf,Φf) is a universal arrow from f to V1, or that
(1C , Rg) : U1(Lg, Ig′,Φg)→ g is a universal arrow from U1 to g, where f and g are used
to denote arbitrary objects in Cat2.

A Ef

B B

Lf

f V1(Rf,Φf) =Rf

C C

Eg D

U1(Lg, Ig′,Φg) =Lg g

Rg

More concisely, we must show that each functor factorises as a cofree twisted coreflection
(with respect to U1) followed by a free delta lens (with respect to V1). We now establish
that the factorisation constructed in Proposition 36 indeed satisfies both of these conditions.

Proposition 38. Given a functor f : A → B, the morphism (Lf, 1B) : f → V1(Rf,Φf)
in Cat2, constructed in Proposition 36, is a universal arrow from f to V1.

Proof. Given a delta lens (g, ψ) : C 7→ D and morphism (h, k) : f → g in Cat2, we must
show that there exists a unique morphism (ℓ, j, k) : (Rf,Φf)→ (g, ψ) in Lens, as depicted
on the left below, such that (j, k) ◦ (Lf, 1B) = (h, k), as depicted on the right below.

∑
a∈A0 fa/B Y

Ef C

B D

∃! ℓ

Φf ψ

∃! j

Rf g

k

A Ef C

B B D

Lf

f

h

Rf

j

g

k

k
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We proceed by constructing the morphism (ℓ, j, k) : (Rf,Φf)→ (g, ψ). Since ψ : Y → C

is a bijective-on-objects functor and A0 is a discrete category, by Lemma 32, there exists a
unique functor ĥ : A0 → Y such that the following diagram commutes.

Y

A0 A C

ψ

ĥ

ιA h

Since the functor If ′, constructed in (16), is an initial functor, and gψ is a discrete
opfibration, by Lemma 31, there exists a unique functor ℓ such that the following diagram
commutes.

A0 Y

∑
a∈A0 fa/B D

ĥ

If ′ gψ

k ◦Tf ′

ℓ

Finally, using the universal property of the pushout Ef , constructed in (16), there exists
a unique functor j such that the following diagram commutes.

A0 A

∑
a∈A0 fa/B B

Y C

If ′

ιA

⌜
Lf

h

Φf

ℓ

j

ψ

We have that j ◦ Lf = h and j ◦ Φf = ψ ◦ ℓ by construction, and using the universal
property of the pushout one may also easily show that g ◦ j = k ◦Rf as required. □

One may observe that the proof of Proposition 38 is very similar to the construction of
the lifting operation in Proposition 33. The reason is that to prove Proposition 38, we are
essentially constructing the lift of the twisted coreflection (Lf, If ′,Φf) against the delta
lens (g, ψ), and then showing this induces a morphism in Lens.

Proposition 39. Given a functor g : C → D, the morphism (1C , Rg) : U1(Lg, Ig′,Φg)→ g

in Cat2, constructed in Proposition 36, is a universal arrow from U1 to g.

Proof. Given a twisted coreflection (f, f ′, π) : A 7→ B, in “diagrammatic form”, and a
morphism (h, k) : f → g in Cat2, we must show that there exists a unique morphism
(ℓ, h, j) : (f, f ′, π) → (Lg, Ig′,Φg) in TwCoref, as depicted below, such that we have
(1C , Rg) ◦ (h, j) = (h, k), or equivalently, Rg ◦ j = k.

A0 A C

X B Eg

ιA

f ′

⌜

h

f Lg

π ∃! j

=
A0 C0 C

X
∑
c∈C0 gc/D Eg

h0

f ′

ιC

Ig′

⌜
Lg

∃! ℓ Φg
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We proceed by constructing the morphism (ℓ, h, j) : (f, f ′, π)→ (Lg, Ig′,Φg). Since f ′

is an initial functor and Tg′, constructed in (16), is a discrete opfibration, by Lemma 31,
there exists a unique functor ℓ such that the following diagram commutes.

A0
∑
c∈C0 gc/D

X D

Ig′ ◦h0

f ′ Tg′

kπ

ℓ

Using the universal property of the pushout B, there exists a unique functor j such that
the following diagram commutes.

A0 A

X B C

∑
c∈C0 gc/D Eg

ιA

f ′

⌜

hf

π

ℓ

j
Lg

Φg

We have that j ◦ f = Lg ◦ h and j ◦ π = Φg ◦ ℓ by construction, and using the universal
property of the pushout one may also easily show that Rg ◦ j = k as required. □

The factorisation of a functor constructed in Proposition 36 together with Proposition 38,
or Proposition 39, tells us that the axiom of factorisation holds for the (TwCoref,Lens)-
lifting operation described in Section 4.1. We summarise this result as follows.

Theorem 40. Each functor admits a factorisation as a cofree twisted coreflection followed
by a delta lens.

4.3. The axiom of lifting. In this subsection, we show that the double functors

TwCoref −→ LLP(Lens) Lens −→ RLP(TwCoref)

induced by the lifting operation described in Section 4.1 are invertible. We first provide
an equivalent presentation of the vertical morphisms of LLP(Lens) and RLP(TwCoref)
in Lemma 42 and Lemma 43, respectively. Following a description of the category Ef

in Construction 45, we then prove the required isomorphisms in Proposition 46 and
Proposition 47. For the definitions of LLP(−) and RLP(−), we refer to Section 1.3.

A vertical morphism in LLP(Lens) consists of a functor f : A → B together with a
lifting operation λ with respect to U : Lens → Sq(Cat). A typical component of this
vertical morphism (f, λ) at a delta lens (g, ψ) : C 7→ D may be depicted as on the left
below. However, by Proposition 38 and the horizontal compatibilities of a lifting operation,
this is equal to a choice of lift against the free delta lens Rf on f , as shown on the right
below.

A C

B D

s

f V1(g,ψ)

t

λg(s, t) =
A Ef C

B B D

f

Lf

Rf

∃!j

V1(g,ψ)β

t
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Since this holds for every component of the lifting operation (f, λ), we observe that the
same data is captured by the pair (f, β), where β ◦ f = Lf and Rf ◦ β = 1B. However,
we have not yet taken into account the vertical compatibilities of the lifting operation.

Notation 41. Given a commutative square kf = gh, we denote the lift of the cofree twisted
coreflection Lf against the free delta lens Rg, constructed using the lifting operation
defined in Proposition 33, by E(h, k) as shown below.

A Eg

Ef D

Lg ◦h

Lf Rg

k ◦Rf

E(h, k)

Furthermore, given a functor f : A→ B, we denote the lift of the cofree twisted coreflection
Lf against the free delta lens RLf by ∆f , and the lift of the cofree twisted coreflection
LRf against the free delta lens Rf by µf , as shown below.

A ELf

Ef Ef

LLf

Lf RLf∆f

Ef Ef

ERf B

LRf Rfµf

RRf

The vertical compatibilities for a vertical morphism (f, λ) in LLP(Lens) amount to the
equality of the following diagonal fillers.

A ELf

Ef

B B

LLf

f

RLf

Rfβ

λ(LLf, β) =

A ELf

Ef

B B

LLf

f

RLf

Rf

λ(LLf, 1B)

Using the notation introduced in Notation 41, we observe that λ(LLf, β) = E(1A, β)◦β and
λ(LLf, 1B) = ∆f ◦β. Therefore, the vertical compatibilities required on a lifting operation
(f, λ) corresponding to the data (f, β) amounts to the equality E(1A, β) ◦ β = ∆f ◦ β. We
summarise this discussion of the vertical morphisms of LLP(Lens) in the following lemma.

Lemma 42. A vertical morphism in LLP(Lens) is equivalent to a pair of functors
(f : A→ B, β : B → Ef) such that the following diagrams commute.

A Ef

B B

Lf

f Rf
β

B Ef

Ef ELf

β

β ∆f

E(1A, β)

An analogous argument may be carried out for vertical morphisms in RLP(TwCoref) and
may be summarised by the following lemma, using the notation introduced in Notation 41.
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Lemma 43. A vertical morphism in RLP(TwCoref) is equivalent to a pair of functors
(f : A→ B,α : Ef → B) such that the following diagrams commute.

A A

Ef B

Lf f
α

Rf

ERf Ef

Ef B

E(α, 1B)

µf α

α

Remark 44. The original definition of an algebraic weak factorisation system [24] on a
category C involves a comonad L and a monad R on C2 which are suitably compatible.
Using the comonad we may construct a double category L-Coalg whose vertical morphisms
are the L-coalgebras, and dually, using the monad there is a double category R-Alg
whose vertical morphisms are the R-coalgebras [6]. The factorisation of a functor f as a
cofree twisted coreflection Lf followed by a free delta lens Rf induces such a comonad
L and monad R. Lemma 42 and Lemma 43 may be implicitly understood as defining
isomorphisms of double categories L-Coalg ∼= LLP(Lens) and R-Alg ∼= RLP(TwCoref).

Before establishing the axiom of lifting, it will be useful to explicitly describe the
pushout Ef , defined in (16) for a functor f : A→ B, following Construction 25.

Construction 45. Given a functor f : A→ B, we describe the category Ef from (16).
The objects are pairs (a ∈ A, u : fa→ b ∈ B), while the morphisms

(a1, u1 : fa1 → b1)→ (a2, u2 : fa2 → b2)

are one of the following two sorts:
(E1) a morphism v : b1 → b2 in B such that v ◦ u1 = u2;
(E2) morphisms v : b1 → fa1 in B and w : a1 → a2 in A such that v ◦ u1 = 1 and w ̸= 1.

The functor Lf : A → Ef sends a morphism w : a → a′ in A to the morphism of sort
(E2) given by w : (a, 1fa) → (a′, 1fa′). The functor Rf : Ef → B sends a morphism
v : (a1, u1) → (a2, u2) of sort (E1) to v : b1 → b2, and sends (v, w) : (a1, u1) → (a2, u2) of
sort (E2) to u2 ◦ fw ◦ v : b1 → b2.

Proposition 46. The canonical double functor TwCoref → LLP(Lens) is invertible.

Proof (Sketch). We first unpack the action the double functor TwCoref → LLP(Lens) in
terms of Lemma 42, and then describe the inverse on vertical morphisms, omitting the
details that this extends to a double functor LLP(Lens)→ TwCoref.

Given a twisted coreflection (f ⊣ q, ε) : A 7→ B, applying Proposition 39 to the morphism
(1A, 1B) : f → f in Cat2 yields the following factorisation through the cofree twisted
coreflection.

A A A

B Ef B

f Lf f

j

1B

Rf
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Therefore the image of (f ⊣ q, ε) under the canonical double functor TwCoref → LLP(Lens)
is determined by the pair (f, j) by Lemma 42.

Given a pair of functors (f : A→ B, β : B → Ef) that satisfy the commutative diagrams
in Lemma 42, we now construct a twisted coreflection. The functor β : B → Ef is given
by β(x) = (qx, εx : fqx→ x) on objects. Taking into account the axiom Rf ◦ β = 1B, the
action of β on a morphism u : x→ y is either:

(1) the morphism u such that u ◦ εx = εy, that is, a morphism of sort (E1);
(2) a pair of morphisms qu : x → fqx in B and qu : qx → qy in A such that qu ̸= 1,

qu ◦ εx = 1 and u = εy ◦ fqu ◦ qu, that is, a morphism of sort (E2).
The above data defines a functor q : B → A and a natural transformation ε : fq ⇒ 1B.
The equation β ◦ f = Lf implies that qf = 1A and ε · f = 1f , and the equation
∆f ◦ β = E(1A, β) ◦ β implies that q · ε = 1q. Therefore, we have a twisted coreflection
(f ⊣ q, ε) : A 7→ B as required. □

The following result was first demonstrated in previous work [15], however we include a
concise proof below for completeness.

Proposition 47. The canonical double functor Lens→ RLP(TwCoref) is invertible.

Proof. We first unpack the action of the double functor Lens→ RLP(TwCoref) in terms
of Lemma 43, and then describe the inverse on vertical morphisms, omitting the details
that this extends to a double functor RLP(TwCoref)→ Lens.

Given a delta lens (f, φ) : A 7→ B, applying Proposition 38 to the identity morphism
(1A, 1B) : f → f in Cat2 yields the following factorisation through the free delta lens.

A Ef A

B B B

Lf

f

1A

Rf

j

g

Therefore the image of (f, φ) under the canonical double functor Lens→ RLP(TwCoref)
is determined by the pair (f, j) by Lemma 43.

Given a pair of functors (f : A→ B,α : Ef → A) that satisfy the commutative diagrams
in Lemma 43, we now construct a delta lens. Given a morphism u : (a, 1fa) → (a, u) in
Ef of sort (E1), we define the image under α : Ef → A to be a morphism φ(a, u) : a→ a′.
We have that dom(φ(a, u)) = a and φ(a, 1fa) = 1a by the equation α ◦ Lf = 1A. The
equation f ◦ α = Rf implies that fφ(a, u) = u, and the equation α ◦ µf = α ◦ E(α, 1B)
implies that φ(a, v ◦ u) = φ(a′, v) ◦φ(a, u). Therefore, we have a delta lens (f, φ) : A 7→ B

as required. □

Together, Proposition 46 and Proposition 47 establish that the (TwCoref,Lens)-lifting
operation, defined in Section 4.1, satisfies the axiom of lifting for an algebraic weak
factorisation system.

31



4.4. The main theorem and corollaries. In this subsection, we state the main theorem
of the paper and a collect some related results.

Theorem 48. There is an algebraic weak factorisation system on Cat given by the cospan

TwCoref Sq(Cat) LensU V

together with lifts of twisted coreflections against delta lenses constructed in Proposition 33.
Furthermore, this awfs is cofibrantly generated by a small double category.

Proof. The chosen lifts assemble into a well-defined (TwCoref,Lens)-lifting operation by
Theorem 34. It satisfies the axiom of lifting by Proposition 46 and Proposition 47, and
the axiom of factorisation by Theorem 40. Since Cat is locally presentable, it follows by
Theorem 4 that this awfs is cofibrantly generated by the small double category Jlens. □

Recall that the comprehensive factorisation system [34], being an orthogonal factorisation
system, induces an awfs on Cat given by double categories IFun and DOpf whose vertical
morphisms are initial functors and discrete opfibrations, respectively.

IFun Sq(Cat) DOpfU V

We also have the closely-related awfs on Cat, detailed by Bourke [5, Example 4(ii)], given
by the double categories Coref and SOpf whose vertical morphisms are split coreflections
and split opfibrations, respectively.

Coref Sq(Cat) SOpfU V

Proposition 49. The following inclusions of double categories determine morphisms of
algebraic weak factorisation systems on Cat.

TwCoref Lens

Coref Sq(Cat) SOpf

IFun DOpf

Proof (Sketch). Given a commutative square kf = gh of functors, we can show that:
• if (f ⊣ q, ε) is a twisted coreflection and (g, ψ) is split opfibration, then the lift of the

underlying split coreflection of (f ⊣ q, ε) against the split opfibration is equal to the lift
of the twisted coreflection against the underlying delta lens of (f, φ);
• if (f ⊣ q, ε) is a split coreflection and g is a discrete opfibration, then the lift of the

underlying initial functor f against the discrete opfibration is equal to the lift of the
split coreflection against the split opfibration induced by g. □

Finally, we may see that twisted coreflections are L-coalgebras as claimed.

Corollary 50. The functor U1 : TwCoref → Cat2, which assigns each twisted coreflection
to its underlying left adjoint, is comonadic.

Proof. Follows from Bourke [5, Theorem 14] and Proposition 46. □
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5. Directions for future work

The free split opfibration on a delta lens. In Corollary 29, we showed that the fully
faithful inclusion of twisted coreflections into split coreflections admits a right adjoint.
This right adjoint is easy to construct: given a split coreflection (f ⊣ q, ε) : A 7→ B, one
may first pullback along ιA : A0 → A to obtain a split coreflection A0 7→

∑
a∈A0 q

−1{a}
and then pushforward along ιA to obtain the desired twisted coreflection.

Similarly, we would like to show that the fully faithful inclusion of split opfibrations into
delta lenses admits a left adjoint. Since the functor Lens→ Cat2 is monadic, and SOpf
has reflexive coequalisers, the existence of a left adjoint Cat2 → SOpf implies the existence
of a left adjoint Lens→ SOpf, as below, by the adjoint triangle theorem of Dubuc [19].

Lens

SOpf Cat2

⊢
?

⊣
⊣

Although there is a formula for computing the left adjoint Lens→ SOpf, finding a simple
description in the spirit of Corollary 29 is ongoing work. Intuitively, constructing the free
split opfibration on a delta lens (f, φ) : A 7→ B should not change the objects of A, but
should modify the morphisms in the fibres of f to make the chosen lifts φ(a, u) opcartesian.

A potential application of this result is to the theory of Schreier split epimorphisms
between monoids [7, 31]. Restricting to categories with a single object, delta lenses
and split opfibrations correspond to split epimorphisms and Schreier split epimorphisms,
respectively. We conjecture that constructing the free split opfibration on a delta lens
restricts to constructing the free Schreier split epimorphism on a split epi between monoids.

Algebraic model categories. Let (C,W) denote a complete and cocomplete category C

equipped with a class of morphisms W satisfying the 2-out-of-3 property. Riehl [33] defines
an algebraic model structure on (C,W) consists of a morphism (F,G) : (L,R)→ (L′,R′) of
algebraic weak factorisation systems, such that the underlying weak factorisation systems
form a model structure on C with weak equivalences W. Is there a class of weak equivalences
W such that the morphism (TwCoref,Lens) → (Coref,SOpf) determines an algebraic
model structure on Cat?

Relationship with reflective factorisation systems. The key tools for constructing
the awfs of twisted coreflections and delta lenses was the discrete category comonad and
the comprehensive factorisation system Cat. In previous work [15], we emphasised that
one may construct a similar awfs starting with a category with sufficient pushouts, and
equipped with an ofs (or an awfs) and an idempotent comonad which preserves certain
pushouts. One may draw parallels with reflective factorisation systems [8] which can be
constructed from a category equipped with an idempotent monad which preserves certain
pullbacks. A detailed study of this relationship awaits further work.
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