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Abstract

Asymmetric lenses were originally defined in Computer Science as a solution to the
view update problem, and are mathematically well understood as a generalisation of
split opfibrations. In this thesis, we utilise internal category theory to unify three kinds
of asymmetric lens — set-based, c-lenses, and d-lenses — through the construction of
an internal category of view updates produced using the well-known lens laws. We
show that this category forms the head of a span of internal functors, which induces
a commutative triangle with the Get of a lens. The composition of these commuting
triangles is used to characterise the three categories Lens, Clens, and Dlens.
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1
Introduction

Lenses were developed as a mathematical way to describe solutions to the view up-
date problem [1] which arises when utilising bidirectional transformations in Computer
Science. The definition of a lens [2] consists of a pair of functions,

g : S ≠æ V p : S ◊ V ≠æ S

called the Get and Put, respectively, such that for all so-called states s œ S and v, u œ V ,
the following axioms, frequently called the lens laws, are satisfied:

g(p(s, v)) = v (Put-Get)
p(s, g(s)) = s (Get-Put)

p(p(s, v), u) = p(s, u) (Put-Put)
The notion of a lens captures the central purpose of a bidirectional transformation to
maintain consistency, via the Put function p, between the source S and view V , related
via the Get function g. It was later shown in [3] that lenses arise both as algebras for
a monad and as coalgebras for a comonad.

The primary assumption underlying a lens is that there exists exactly one way to
transition between states, in both the source and view. In 2012, a categorial generalisa-
tion was provided to relax this assumption and allow the possibility of many transitions
between states. A c-lens [4] consists of a pair of functors,

G : S ≠æ V P : (G ¿ V) ≠æ S
called the Get and Put, respectively, where (G ¿ V) is the comma category whose
objects are pairs (S, – : GS æ V ) called view updates and whose morphisms are pairs
Èf, gÍ : (S, –) æ (S Õ

, –
Õ), consisting of an arrow of S and an arrow of V, such that

g ¶ – = –
Õ ¶ Gf . Analogously to lenses, a c-lens is also required to satisfy three lens

laws:

GP (S, –) = V GP Èf, gÍ = g : V æ V
Õ (Put-Get)

P (S, 1GS) = S P Èf, GfÍ = f : S æ S
Õ (Get-Put)

P (P (S, –), —) = P (S, —–) P ÈP Èf, gÍ, hÍ = P Èf, hÍ (Put-Put)
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The definition of a c-lens is equivalent to that of a split Grothendieck opfibration,
and c-lenses also arise as algebras for a well-known KZ-monad [5]. Furthermore the
splitting functor,

K : (G ¿ V) ≠æ �S

induced by a c-lens, which assigns to each view update its opcartesian lift in the arrow
category �S, is a left-adjoint right-inverse functor, ensuring a least-change solution to
the view update problem.

While c-lenses are the correct generalisation of lenses mathematically, least-change
updates may be di�cult to establish in practical contexts. In 2011, prior to the intro-
duction of c-lenses to the bidirectional transformation community, [6] presented another
category-based generalisation of set-based lenses. A d-lens consists of a Get functor
G : S æ V together with an unnamed function1,

k : obj (G ¿ V) æ obj(�S) (S, –) ‘æ k(S, –) : S æ p(S, –)

which defines the Put function p : obj (G ¿ V) æ obj(S) by taking the codomain of the
output, and is required to satisfy three lens laws:

Gk(S, –) = – : GS æ V (Put-Get)
k(S, 1GS) = 1S : S æ S (Get-Put)

k(p(S, –), —) ¶ k(S, –) = k(S, —–) (Put-Put)

In the paper [7] it was shown that every c-lens induces a d-lens, simply by taking the
underlying object assignment of the splitting functor, and thus a d-lens may be seen
as a c-lens without a universal property.

In many ways, the mathematical foundation of d-lenses is unsatisfying. While
both lenses and c-lenses arise naturally as algebras for a monad, d-lenses only fit
awkwardly into this mould as algebras for a semi-monad [7]. The Put for a d-lens is
the byproduct of another function which lifts view updates (S, –) to source updates
k(S, –), while in lenses and c-lenses the Put takes view updates to source states p(s, v)
or P (S, –), and the corresponding source updates are canonically induced. While there
has been work done characterising lenses as d-lenses between codiscrete categories [8],
and characterising c-lenses as d-lenses with a universal property on the lifts [7], as well
as a growing amount of research into symmetric counterparts [9–11], there has been
little success in finding a cohesive mathematical framework for lenses, c-lenses, and
d-lenses.

Plan of the thesis
The goal of this thesis is to unify lenses, c-lenses, and d-lenses within a common
mathematical framework using internal category theory. We now outline the structure
of the thesis and highlight the key contributions.

ù In Chapter 2 we present the background material on internal categories, focusing
on Set and Cat, and fix notational conventions.

1In the literature, k is called the Put while the codomain remains unnamed; we reverse this con-
vention to align with the notation and terminology used for lenses and c-lenses.
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ù In Chapter 3 we develop the internal theory of set-based lenses (often just lenses

when the context is clear) working internal to Set. In Theorem 2 we prove that
every lens induces a small category � = (S, S ◊ V ) using the Get-Put and Put-
Put laws. In Corollary 3 we obtain the result that every lens is equivalent to a
commuting triangle of small categories and functors. These results allow us to
provide a novel description for composition in the category Lens whose objects
are sets and whose morphisms are lenses.

ù In Chapter 4 we develop the internal theory of c-lenses working internal to
Cat. In Theorem 4 we prove that every c-lens induces a double category ⇤ =
(S, (G ¿ V)) which is moreover shown to be equivalent to a commuting triangle
of double categories and double functors in Corollary 6. These results allow us to
provide a novel description for composition in the category Clens whose objects
are small categories and whose morphisms are c-lenses.

ù In Chapter 5 we develop the internal theory of d-lenses working internal to Set. In
Theorem 7 we prove that every d-lens induces a small category � = (S0, S0◊V0 V1)
which is moreover shown to be equivalent to a commuting triangle of small cat-
egories and functors in Corollary 8. These results allow us to provide a novel
description for composition in the category Dlens whose objects are small cate-
gories and whose morphisms are d-lenses.

ù In the Conclusion we summarise our results, discuss the remarkable similarities
and subtle di�erences between the three kinds of lens, and explore some ideas
towards future work in area of lenses and internal category theory.

As illustrated above, we have strived to find and present parallel treatments of the
three kinds of lenses, allowing us to present each chapter with a similar structure and
consistent notation.

Notation
We now provide some context for notation and terminology common in the Computer
Science community for the mathematical audience.

Throughout we use symbol � to denote a lens as a whole; for example as both a
quadruple � = (S, V, g, p), and as a morphism � : S ⌦ V . Both of these notations are
common in the bidirectional transformation community, and aim to represent a lens as
consisting of a source and a view, together with operations, Get and Put, which work in
opposite directions (justifying the notation ⌦ for a lens). Later we use the notation �1
for the so-called object of view updates, thus unifying the apparently di�erent domains
for the Put for each set-based lenses, c-lenses, and d-lenses.

We exclusively use the symbols g or G for the Get of a lens. The Put of a lens
is commonly denoted by p or P in the literature, while in this thesis it often has an
attached subscript, for example p1 or P1, indicating it is also the codomain map of an
internal category; both of these notations are interchangeable.

Finally we remark that, as seen above, each kind of lens must satisfy some basic
axioms, called the Put-Get, Get-Put, and Put-Put laws. These names, introduced by the
computer scientists, are intended to indicate the results of computing a Put followed
by a Get (Put-Get), a Get followed by a Put (at least in the set-based case where the
name Get-Put was first introduced), and the Put done successively (Put-Put).
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Background

This chapter provides an account of the relevant internal category theory required for
the following chapters. There is nothing original presented, and experienced category
theorists may prefer to briefly skim this chapter simply to see our notational conven-
tions.

We establish the notational convention of reusing labels for similar morphisms,
allowing them instead to be distinguished diagrammatically by their domain and
codomain; for example, the domain, codomain, identity and composition maps will
frequently use the same labels (l, r, i, c). Other common conventions include using
�C for the arrow category of C, and using (G ¿ V) for the comma category (G ¿ 1V).

The first section on small categories will be pertinent for both set-based lenses and
d-lenses, while the section on codiscrete categories is used exclusively for set-based
lenses. The remaining sections will form the core material needed to discuss c-lenses.
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2.1 Small categories
Let Set be the category whose objects are sets and whose morphisms are functions.
A considerable amount of category theory can be studied internal to Set, where the
collections of objects and morphisms of a category are actually sets, and the set of
composable morphisms is constructed via pullback. This notion is made rigorous with
the definition of a small category and functors between them.
Definition 1. A small category C, or a category internal to Set, consists of a set of
objects C0 and a set of morphisms C1 together with functions

C0 C1 C2 C3i

l1

r1

l2

r2

c

l3

r3

where
– The function i assigns each object to its identity morphism;

– The functions l1 and r1 assign a morphism to its domain and codomain objects,
respectively;

– The set C2 is the set of composable pairs of morphisms, together with projection
functions l2 and r2 onto the first and second component morphisms, respectively;

– The function c assigns a pair of morphisms in C2 to their composite morphism;

– The set C3 is the set of composable triples of morphisms, together with projection
functions l3 and r3 onto the first and second pair of composable morphisms,
respectively;

– The sets C2 and C3 are defined by the pullback diagram below:
C3

C2 C2

C1 C1 C1

C0 C0

l3 r3

l2 r2 l2 r2

r1

y

l1 r1 l1

y y

These functions are required to satisfy the following commutative diagrams

C0 C1

C1 C0

1
i

i

r1

l1

C1 C2 C1

C0 C1 C0

l1

l2 r2

c r1

l1 r1

C1 C2

C2 C1

È1,i r1Í

1Èi l1,1Í c

c

C3 C2

C2 C1

1◊c

c◊1 c

c

which respectively determine:
– The domain and codomain of identity morphisms;

– The domain and codomain of composite morphisms;

– The left and right composition with an identity morphism;

– The associativity of composition.
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Definition 2. Let C and D be small categories. A functor F : C æ D internal to Set
consists of a pair of functions

f0 : C0 ≠æ D0 f1 : C1 ≠æ D1

satisfying the following commutative diagrams:

C0 C1 C0

D0 D1 D0

f0

l1 r1

f1 f0

l1 r1

C0 C1 C2

D0 D1 D2

i

f0 f1

c

f1◊f1

i c

The identity functor 1C : C æ C for a small category C consists of the functions:

1C0 : C0 æ C0 1C1 : C1 æ C1

Let Cat be the category whose objects are small categories and whose morphisms
are functors. The 1-category Cat may be promoted to a 2-category with the definition
of natural transformations between functors, together with the notions of whiskered,
vertical, and horizontal composition.

Definition 3. Let F, G : C æ D be functors between small categories. A natural

transformation „ : F ∆ G internal to Set consists of a function

„ : C0 ≠æ D1

satisfying the following commutative diagrams:

C0

D0 D1 D0

f0
„

g0

l1 r1

C1 D2

D2 D1

Èf1,„ r1Í

È„ l1,g1Í c

c

Definition 4. Given a diagram of functors and a natural transformation,

A B C DF

G

H

K» „

their whiskered composite natural transformation K„F : KGF ∆ KHF is defined as
the composite function:

A0 B0 C1 D1
f0 „ k1

Definition 5. Given a diagram of functors and natural transformations,

C D

F

G

H

» „

» Â

their vertical composite natural transformation Â • „ : F ∆ H is defined as the com-
posite function:

C0 D2 D1
È„,ÂÍ c
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Definition 6. Given a diagram of functors and natural transformations

A B C
F

G

H

K

» „ » Â

their horizontal composite natural transformation Â ú „ : HF ∆ KG is defined using
whiskering and vertical composition as the diagonal of the commutative square:

A0 C2

C2 C1

Âú„

Èh1„, Âg0Í

ÈÂf0, k1„Í c

c

The vertical identity natural transformation 1F : F ∆ F for a functor F : C æ D
is defined by the diagonal of the commutative square,

C0 C1

D0 D1

1F

i

f0 f1

i

while the horizontal identity natural transformation 11C : 1C ∆ 1C for a small category
C is defined by the identity map i : C0 æ C1.

It can be shown that whiskered, vertical, and horizontal composites all interact
nicely to yield a 2-category Cat of small categories, functors, and natural transfor-
mations. We conclude with the notion of adjunction, arguably the most important
concept within the 2-category Cat.

Definition 7. An adjunction consists of a pair of functors

C D
F

G

‹

where F is the left adjoint and G is the right adjoint, together with natural transfor-
mations

÷ : 1C ∆ GF Á : FG ∆ 1D

called the unit and counit, respectively, satisfying the triangle identities:

D2

C0 D1

cÈf1÷, Áf0Í

1F

C2

D0 C1

cÈ÷g0, g1ÁÍ

1G

Alternatively, the triangle identities state that the following diagrams compose to give
the identity natural transformations 1F : F ∆ F and 1G : G ∆ G, respectively.

D D

C C
G

1D

» ÷

» ÁF

1C

F

D D

C C
G

1D

» Á

» ÷

G
F

1C
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2.2 Codiscrete categories
Given a set C, the codiscrete category cd(C) has set of objects C and set of morphisms
given by the cartesian product,

C C ◊ C C
l1 r1

where the left and right projections are the domain and codomain maps, respectively.
The identity map, often called the diagonal, is induced by the universal property of
the product:

C

C C ◊ C C

1C 1C�

l1 r1

The set of composable morphisms is given by the product C ◊ C ◊ C constructed via
the pullback,

C ◊ C ◊ C

C ◊ C C ◊ C

C C C

{ú} {ú}

l2 r2

l1 r1 l1 r1

!

y

! ! !

y y

while the composition map also induced by the universal property of the product via
the following diagram:

C ◊ C C ◊ C ◊ C C ◊ C

C C ◊ C C

l1

l2 r2

Èl1l2,r1r2Í r1

l1 r1

That composition is unitial and associative follows directly from the universal property
of the product, and we omit the details.

Given a function f : C æ D we can induce a functor cd(f) : cd(C) æ cd(D)
between the corresponding codiscrete categories induced via the following diagram:

C C ◊ C C

D D ◊ D D

f

r1l1

f◊f f

r1l1

We omit the details showing that the following diagrams commute:

C C ◊ C C ◊ C ◊ C

D D ◊ D D ◊ D ◊ D

�

f f◊f

Èl1l2,r1r2Í

f◊f◊f

� Èl1l2,r1r2Í

Here we prefer the more suggestive shorthand f ◊ f ◊ f = (f ◊ f) ◊ (f ◊ f).
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2.3 Comma categories and arrow categories
Comma categories are a versatile construction in the 2-category Cat of small categories,
functors, and natural transformations. Here we provide the abstract definition of a
comma category together with its universal properties.

Definition 8. Given a cospan of categories and functors,

A C BF G

their comma category (F ¿ G) is the category together with projection functors and a
natural transformation,

(F ¿ G)

A B

C

L R

F

–

G

satisfying the following universal properties:

ù Given functors L
Õ : D æ A and R

Õ : D æ B and a natural transformation
–

Õ : FL
Õ ∆ GR

Õ, there exists a unique functor H : D æ (F ¿ G) such that
the following diagrams are equal:

D

A B

C

L
Õ

R
Õ

F

–
Õ

G

=

D

(F ¿ G)

A B

C

L
Õ

R
Õ

H

L R

F

–

G

ù Given functors H, H
Õ : D æ (F ¿ G) and natural transformations — : LH ∆ LH

Õ

and “ : RH ∆ RH
Õ such that the following whiskered composites are equal,

D

(F ¿ G)

(F ¿ G)

A B

C

H

H
Õ

L

—

L R

F

–

G

=

D

(F ¿ G)

(F ¿ G)

A B

C

H
Õ

H

R

“

L R

F

–

G

there exists a unique natural transformation ◊ : H ∆ H
Õ such that

— = L◊ and “ = R◊.
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Given a small category C, we wish to construct a category whose objects are the
morphisms of C. The instance of the comma category for the identity cospan,

C C C1C 1C

is known as the arrow category for C and is constructed formally from the comma
square:

(C ¿ C)

C C

C

L R

1C

„

1C

We prefer to use the shorter notation �C := (C ¿ C) for the arrow category.
Alternatively, given a small category C, the arrow category �C has set of objects C1

and set of morphisms given by the commutative squares, constructed via the pullback
with domain and codomain maps depicted:

C2 ◊C1 C2

C2 C2

C1 C1 C1

⁄ fl

l2
c c

r2

y

Given a functor F : C æ D between small categories, we can induce a functor
between the corresponding arrow categories using the universal property of the comma
category:

�C

�D

D D

D

F L F R

�F

L R

1D

„

1D

We may also define the comma category via the following pullback diagram with
the arrow category:

(F ¿ G)

(F ¿ C) (C ¿ G)

A �C B

C C

C

L R

F

y

L R

G

y

„

1C

y

1C
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2.4 Double categories
The category Cat of small categories and functors is known to have pullbacks. It is
possible categorify the definition of a small category, simply by replacing every instance
of set with category, and every instance of function with functor.
Definition 9. A double category D, or a category internal to Cat, consists of a category
of objects D0 and a category of morphisms D1 together with functors

D0 D1 D2 D3÷

L1

R1

L2

R2

µ

L3

R3

where D2 and D3 are pullbacks, and the functors satisfy the relevant commutative
diagrams.

A more e�ective characterisation of a double category emphasises the two di�erent
types of morphism present. For a double category D, let D00 and D01 be the sets of
objects and morphisms of the category D0, and likewise D10 and D11 for the sets of
objects and morphisms of the category D1.
Definition 10. A double category D consists of sets D00, D01, D10, and D11 such that

– There is a small category (D00, D01) of objects and vertical morphisms, together
with vertical composition defined by the category D0.

– There is a small category (D00, D10) of objects and horizontal morphisms, together
with horizontal composition defined by the internal structure to Cat.

– There is a small category (D10, D11) of horizontal morphisms and 2-cells, together
with vertical composition of 2-cells defined by the category D1.

X Y

X
Õ

Y
Õ

X
ÕÕ

Y
ÕÕ

» –

» “

=

X Y

X
ÕÕ

Y
ÕÕ

» “ • –

– There is a small category (D01, D11) of vertical morphisms and 2-cells, together
with horizontal composition of 2-cells defined by the internal structure to Cat.

X Y Z

X
Õ

Y
Õ

Z
Õ

» – » —
=

X Z

X
Õ

Z
Õ

» — ú –

satisfying the following interchange law between vertical and horizontal composition
of 2-cells:

X Z

X
Õ

Z
Õ

X
ÕÕ

Z
ÕÕ

» — ú –

» ” ú “

=

X Y Z

X
Õ

Y
Õ

Z
Õ

X
ÕÕ

Y
ÕÕ

Z
ÕÕ

» – » —

» “ » ”

=

X Y Z

X
ÕÕ

Y
ÕÕ

Z
ÕÕ

» “ • – » ” • —
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Definition 11. Let C and D be double categories. A double functor F : C æ D, or
simply a functor internal to Cat, consists of a pair of functors

F0 : C0 ≠æ D0 F1 : C1 ≠æ D1

satisfying the following commutative diagrams:

C0 C1 C0

D0 D1 D0

F0

L1 R1

F1 F0

L1 R1

C0 C1 C2

D0 D1 D2

÷

F0 F1

µ

F1◊F1

÷ µ

The identity functor 1D : D æ D for a double category D consists of the functions:

1 : D0 æ D0 1: D1 æ D1

Let Dbl be the category whose objects are double categories and whose morphisms
are double functors. When working with double categories, we will often find it more
convenient and intuitive to use explicit squares of objects, morphisms, and 2-cells rather
than keeping within a completely internal framework.

2.5 Double category of squares
Given a category D, the double category of squares sq(D) has category of objects D
and category of morphisms given by the arrow category,

D �D DL1 R1

where the left and right projections are the domain and codomain maps, respectively.
The identity map is induced by the universal property of the comma category:

D

�D

D D

D

1D 1D
�

L1 R1

1D

„

1D

Recall the identity map � provides the horizontal identity, while the internal structure
of the arrow category �D provides the vertical identity, depicted by the following
squares, respectively:

X X

X
Õ

X
Õ

1X

f f

1XÕ

X Y

X Y

„

1X 1Y

„
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The category of composable morphisms is given by the pullback

�D ◊D �D

�D �D

D D D

D D

L2 R2

L1 R1 L1 R1

1D

„ „

y

1D 1D 1D

while the composition map also induced by the universal property of the comma cate-
gory via the following diagram:

�D ◊D �D

�D

D D

D

L1L2 R1R2
µ

L1 R1

1D

„

1D

Again recall that the composition map µ defines the horizontal composition,

X Y Z

X
Õ

Y
Õ

Z
Õ

Â„

„

f

Â

g h

Â
Õ
„

Õ

„
Õ

Â
Õ

while the internal structure of the arrow category �D defines the vertical composition:

X Y

X
Õ

Y
Õ

X
ÕÕ

Y
ÕÕ

hf

„

f

kg

g

„
Õ

h k

„
ÕÕ

Given a functor F : C æ D we can induce a double functor sq(F ) : sq(C) æ sq(D)
between the corresponding double categories of squares:

C �C C

D �D D
F

R2L2

�F F

R1L1
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We omit the details showing that the following diagrams commute:

C �C �C ◊C �C

D �D �D ◊D �D

�

F �F

µ

�F ◊�F

� µ

Given that a double category is internal to the 2-category Cat, we are also able to
remark upon adjunctions between functors which provide the structure. In particular,
for the double category of squares, the domain, identity, and codomain maps form an
adjoint triple, a fact which will be useful later. A reference for this result may be found
in [5].

Lemma 1. The diagonal is left-adjoint right-inverse to the left projection � ‰ L1 with

counit ÿL1 : �L1 ∆ 1�D defined by the whiskered natural transformations:

L1ÿL = 1L1 : L1 ∆ L1 R1ÿL = „ : L1 ∆ R1.

Dually, the diagonal is right-adjoint right-inverse to the right projection R1 ‰ � with

unit ÿR1 : 1�D ∆ �R1 defined by the whiskered natural transformations:

L1ÿR1 = „ : L1 ∆ R1 R1ÿR1 = 1R1 : R1 ∆ R1.

Given an object „ : X æ Y , the component of the counit ÿL at „ and the component
of the unit ÿR at „, are given by the the following commutative squares, respectively:

X X

X Y

1X

1X „

„

X Y

Y Y

„

„ 1Y

1Y
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3
Internal characterisation of set-based lenses

Consider a pair of sets S and V called the source and view, respectively, whose elements
are called states. The morphisms of the corresponding codiscrete categories are often
called updates.

Definition 12. A (set-based) lens � : S ⌦ V is a quadruple � = (S, V, g, p) consisting
of a function,

g : S ≠æ V (Get)

together with a function,

p : S ◊ V ≠æ S (Put)

satisfying the following commutative diagrams called the lens laws:

S ◊ V

S V

p r1

g

S ◊ V

S S

pÈ1S ,gÍ

1S

S ◊ V ◊ V S ◊ V

S ◊ V S

l1◊1V

p◊1V

p

p

In order, these diagrams are known as Put-Get, Get-Put, and Put-Put.

The definition of a lens was first stated in [2] and was later stated in the above
diagrammatic form as algebras for a monad in [12].

The goal of this chapter is to recast the definition of a lens within the context of
internal category theory. Working internal to Set, we characterise a lens as a small
category � = (S, S◊V ), and show this category takes part in a commutative triangle of
functors. We show these commutative triangles compose, and conclude with a definition
of the category Lens whose objects are sets and whose morphisms are lenses.
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3.1 The Get function
The forward direction of a lens � : S ⌦ V is simply a function g : S æ V called the Get
function. The Get function induces a canonical functor cd(g) : cd(S) æ cd(V ) between
codiscrete categories which, by virtue of being a functor, consists of a pair of functions,

g : S ≠æ V g ◊ g : S ◊ S ≠æ V ◊ V (Get)

satisfying the following commutative diagrams:

S S ◊ S S

V V ◊ V V

g

l1 r1

g◊g g

l1 r1

S S ◊ S S ◊ S ◊ S

V V ◊ V V ◊ V ◊ V

�

g g◊g

Èl1l2,r1r2Í

g◊g◊g

� Èl1l2,r1r2Í

The set of view updates for the Get function is given by the left-hand pullback,

S ◊ V V ◊ V V

S V {ú}

r1

y
g◊1V

l1
y

r1

l1 !

g !

(3.1)

which is induced from the right-hand and outer pullbacks over the singleton set by the
pullback pasting lemma; of course, these pullbacks are really just cartesian products.

Furthermore we can use the universal property of S ◊ V to induce a canonical
factorisation of the function g ◊ g : S ◊ S æ V ◊ V depicted in the following diagram:

S ◊ S S ◊ V V ◊ V

S S V

g◊g

1S◊g

l1
y g◊1V

l1 l1

1S g

The universal property of the set of view updates may be used to induce two other
canonical functions, which will be important in constructing a small category � whose
set of morphisms is S ◊ V , and whose sets of objects is S.

Firstly, we define a candidate for the identity map via the following diagram:

S

S S ◊ V V

1S g

È1S ,gÍ

l1 r1

(3.2)
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Next we extend the diagram (3.1) to include an additional pullback:

S ◊ V ◊ V V ◊ V ◊ V V ◊ V V

S ◊ V V ◊ V V {ú}

S V V

r2

y
g◊1V ◊1V

l2
y

r2

l2
y

r1

l1 !

y
g◊1V

l1
y

r1

l1 !

!

g !

(3.3)

We define a candidate for the composition map via the following diagram:

S ◊ V S ◊ V ◊ V V

S S ◊ V V

l1

r2l2

l1◊1V 1V

r1l1

(3.4)

Altogether the diagrams (3.1), (3.2), (3.4) suggest the definition of a small category
� whose set of objects is �0 := S and whose set of morphisms is �1 := S ◊ V . We
already have suitable candidates for the domain map l1 : S ◊ V æ S, the identity map
È1S, gÍ : S æ S ◊V , and the composition map l1 ◊1V : S ◊V ◊V æ S ◊V . A suitable
candidate for the codomain map will be obtained from the Put function in the next
section.

3.2 The Put function
The backwards direction of a lens � : S ⌦ V is given by a function,

p : S ◊ V ≠æ S (Put)
called the Put function, satisfying the following commutative diagrams:

S ◊ V

S V

p r1

g

S ◊ V

S S

pÈ1S ,gÍ

1S

S ◊ V ◊ V S ◊ V

S ◊ V S

l1◊1V

p◊1V

p

p

(3.5)

Recall the above diagrams are known as the lens laws from Definition 12 and the
function p◊1V present in the Put-Put law may be defined using the universal property
of the product via the diagram,

S ◊ V ◊ V S ◊ V V

S ◊ V S {ú}

l2

r2

p◊1V

y
l1

r1

y
!

p !

(3.6)

where the right-hand square and the outer rectangle are pullbacks over the singleton
which induce the left-hand pullback square by the pullback pasting lemma.
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Theorem 2. If the quadruple � = (S, V, g, p) forms a lens, then the pair � = (�0, �1) =
(S, S ◊ V ) forms a small category.

Proof. Given a lens � : S ⌦ V consider the functions,

�0 �1 �2È1S ,gÍ

l1

p

l2

p◊1V

l1◊1V

denoting the candidates for the domain, codomain, identity, composition, and pro-
jection maps for a prospective small category � with set of objects �0 = S, set of
morphisms �1 = S ◊ V , and set of composable morphisms �2 = S ◊ V ◊ V .

Given the function È1S, gÍ : S æ S ◊ V defined in (3.2) we have,

S

S S ◊ V S

1S 1S
È1S ,gÍ

l1 p

where the left-hand triangle commutes by construction and the right-hand triangle
commutes by the Get-Put law. Therefore the function È1S, gÍ : S æ S ◊ V satisfies the
diagrams for the identity map of a small category.

Next note from (3.6) that �2 = S ◊ V ◊ V is the pullback of the candidates for
the domain and codomain maps, and therefore is well-defined as the set of composable
morphisms.

Given the function l1 ◊ 1V : S ◊ V ◊ V æ S ◊ V defined in (3.4) we have,

S ◊ V S ◊ V ◊ V S ◊ V

�0 S ◊ V S

l1

p◊1Vl2

l1◊1V p

pl1

where the left-hand square commutes by construction and the right-hand square com-
mutes by the Put-Put law. Therefore the function l1 ◊1V : S ◊V ◊V æ S ◊V satisfies
the diagrams for the composition map of a small category.

In order to show the right-unitality law holds, we construct the universal function
into the set of composable morphisms:

S ◊ V

S

S ◊ V ◊ V

S ◊ V S ◊ V

S

1S◊V

p

È1S ,gÍ
l2 p◊1V

p l1

y

This map corresponds to the universal function È1, ir1Í : C1 æ C2 in Definition 1.
Composing with the composition map l1 ◊ 1V : S ◊ V ◊ V æ S ◊ V and using the
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Put-Get law we have the following diagram:

S ◊ V S

S ◊ V S ◊ V ◊ V S ◊ V

S S ◊ V V

1S◊V

p

È1S ,gÍ

l1

l2

l1◊1V

p◊1V

r1=gp

l1 r1=gp

Now using the Put-Get law we have r1 ¶ È1S, pÍ ¶ p = r1 : S ◊ V æ V , and by the
universal property of the product, the composite of the dashed functions is the identity
1S◊V : S ◊ V æ S ◊ V . Therefore the right-unitality law holds.

The proof of the left-unitality law and associativity follow in a similar way: first
construct the relevant universal function, compose and simplify using the lens laws,
then invoke the universal property of the product. We omit the routine verification of
these details.
Definition 13. Given a lens � : S ⌦ V , its category of view updates � is given by the
following sets and functions:

�0 �1 �2È1S ,gÍ

l1

p

l2

p◊1V

l1◊1V

3.3 A lens as a commuting triangle of functors
Consider a lens � : S ⌦ V together with the corresponding view update category
� = (S, S ◊ V ). We now introduce two canonical functors to the codiscrete categories
induced by the source and view, which form a commuting triangle with the functor
induced by the Get function.

Using the Get-Put and Put-Put laws, there exists a functor K : � æ cd(S) consisting
of a pair of functions,

1S : S ≠æ S Èl1, pÍ : S ◊ V ≠æ S ◊ S

satisfying the following commutative diagrams:

S S ◊ V S

S S ◊ S S

1S

l1 p

Èl1,pÍ 1S

l1 r1

S S ◊ V S ◊ V ◊ V

S S ◊ S S ◊ S ◊ S

È1S ,gÍ

1S Èl1,pÍ

l1◊1V

Èl1,pÍ◊p

� Èl1l2,r1r2Í

Using the Put-Get law, there exists a functor Q : � æ cd(V ) consisting of a pair of
functions,

g : S ≠æ V g ◊ 1V : S ◊ V ≠æ V ◊ V

satisfying the following commutative diagrams:

S S ◊ V S

V V ◊ V V

g

l1 p

r1
g◊1V g

l1 r1

S S ◊ V S ◊ V ◊ V

V V ◊ V V ◊ V ◊ V

È1S ,gÍ

g g◊1V

l1◊1V

g◊1V ◊1V

� Èl1l2,r1r2Í
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Furthermore, from the Put-Get law we can see that cd(g)K = Q : � æ V, which
may be expanded into the following commutative triangle of small categories and func-
tors:

S ◊ V

S

S V

S ◊ S V ◊ V

g◊1VÈl1,pÍ

p l1

g1S

g

r1

l1

g◊g

r1

l1

(3.7)

Corollary 3. The quadruple � = (S, V, g, p) forms a lens if and only if the diagram

(3.7) forms a commuting triangle of small categories and functors.

It is interesting that the construction of a lens which is based entirely of sets and
functions can be naturally stated as a commuting diagram in Cat. One of the pri-
mary benefits of this formulation is the natural definition for composition of lenses as
morphisms between sets.

3.4 The category Lens
We wish to construct a category Lens whose objects are sets and whose morphisms are
set-based lenses. While the definition is well-known, it is di�cult to find a reference
in the literature for the composition of lenses except for the recent preprint [13]. Here
we motivate the composition of lenses from first principles, and show it coincides with
the pullback of their representation as a commuting triangle of functors.

Given a pair of lenses � : S ⌦ V and �Õ : V ⌦ U , we define the Get function of the
composite lens �Õ ¶ � : S ⌦ U to be the composite function g

Õ ¶ g : S æ U . Mirroring
the construction in (3.1), the set of view updates for the composite Get function is
given the pullback:

S ◊ U U ◊ U U

S U {ú}

r1

y
g

Õ
g◊1V

l1
y

r1

l1 !

g
Õ
g !

(3.8)

To define the Put function for the composite lenses, we first consider the decompo-
sition of the pullback (3.8) as the following:

S ◊ U V ◊ U U ◊ U

S V U

y
g◊1U

l1

g
Õ
g◊1U

y
g

Õ◊1U

l1 l1

g g
Õ
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However this pullback may be decomposed even further to yield the following commu-
tative diagram:

S ◊ U V ◊ U U ◊ U

S ◊ V V ◊ V

S V U

y
g◊1U

Èl1,p
Õ(g◊1U )Í

y
Èl1,p

ÕÍ

g
Õ◊1U

l1y
g◊1V

l1 l1

g

l1

g
Õ

Thus we may define the Put function for the composite lens to be the function:

S ◊ U S ◊ V S
Èl1,p

Õ(g◊1U )Í

pÈl1,p
Õ(g◊1U )Í

p

We omit the details showing that this Put function satisfies the three lens laws.

Definition 14. Given a pair of lenses � = (S, V, g, p) and �Õ = (V, U, g
Õ
, p

Õ), their
composite lens �Õ ¶ � : S ⌦ U consists of the Get function,

g
Õ ¶ g : S ≠æ U

together with the Put function:

pÈl1, p
Õ(g ◊ 1U)Í : S ◊ U ≠æ S.

The identity lens is given by the quadruple 1S = (S, S, 1S, r1).

Now consider a pair of lenses � : S ⌦ V and �Õ : V ⌦ U and their representation
as commuting triangles of functors:

� �Õ

cd(S) cd(V ) cd(U)

K Q K
Õ Q

Õ

cd(g) cd(gÕ)

(3.9)

Given the composite lens �Õ ¶ � : S ⌦ U , by Theorem 2 there is a small category of
view updates �Õ ¶ � defined by the sets,

(�Õ ¶ �)0 := S (�Õ ¶ �)1 := S ◊ U

and by Corollary 3.7 we have commutative diagrams for the sets of objects and the
sets of morphisms, respectively:

S

S V

S V U

g1S y

g1S g
Õ1V

g
Õ¶g

g g
Õ

S ◊ U

S ◊ V V ◊ U

S ◊ S V ◊ V U ◊ U

g◊1UÈl1,p
Õ(g◊1U )Í y

g◊1V

Èl1,pÍ g
Õ◊1U

Èl1,p
ÕÍ

g◊g g
Õ◊g

Õ
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These combine to yield the following commutative diagram of small categories and
functors:

�Õ ¶ �

� �Õ

cd(S) cd(V ) cd(U)

y„KÕ ‚Q

K Q K
Õ Q

Õ

cd(g) cd(gÕ)

(3.10)

Thus the composition of a pair of lenses (3.9) given by Definition 14 may be char-
acterised by the specific choice of pullback �Õ ¶ � to yield a commuting triangle of
functors (3.10).

Definition 15. Let Lens be the category of lenses whose objects are sets, whose
morphisms are lenses, and whose composition is given by Definition 14.

Remark. The category Lens is well-defined: the composition of lenses is unital and
associative, as it arises from the composition of the underlying Get functions, which is
unital and associative.



4
Internal characterisation of c-lenses

Consider a pair of small categories S and V called the source category and view category,
respectively. The objects of both categories are called states while their morphisms are
usually called updates.
Definition 16. A c-lens � : S ⌦ V is a quadruple � = (S, V, G, P1) consisting of a
functor,

G : S ≠æ V (Get)
together with a functor,

P1 : (G ¿ V) ≠æ S (Put)
satisfying the following commutative diagrams called the c-lens laws:

(G ¿ V)

S V

P1 R1

G

(G ¿ V)

S S

P1÷

1S

(R1 ¿ V) (G ¿ V)

(G ¿ V) S

µ

P2

P1

P1

In order, these diagrams are known as Put-Get, Get-Put, and Put-Put.
We note the three c-lens laws expressed in the Introduction are exactly the explicit

equations given by the diagrams above. However instead of defining the functors R1,
÷, µ, P2 explicitly, we prefer to use the universal property of the comma category in
(4.1), (4.2), (4.4), and (4.7), respectively.

The definition of a c-lens was first stated in [4]. Among mathematicians however,
such structures had already been considered and they amount to simply recognising G

as a split opfibration. The above definition coincides with the characterisation of split
opfibrations as strict algebras for the KZ-monad appearing in [5].

The goal of this chapter is to recast the definition of c-lenses within the context
of internal category theory. Working internal to Cat, we characterise a c-lens as a
double category ⇤ = (S, (G ¿ V)) and show this category takes part in a commutative
triangle of double functors. We show how these triangles compose, and conclude with
a definition of the category Clens whose objects are categories and whose morphisms
are c-lenses.
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4.1 The Get functor
The forward direction of a c-lens � : S ⌦ V is simply a functor G : S æ V called the
Get functor. The Get functor induces a canonical double functor sq(G) : sq(S) æ sq(V)
which, by virtue of being a double functor, consists of a pair of functors,

G : S ≠æ V �G : �S ≠æ �V (Get)

satisfying the following commutative diagrams:

S �S S

V �V V
G

L1 R1

�G G

L1 R1

S �S �S ◊S �S

V �V �V ◊V �V
G

�

�G

µ

�G◊�G

� µ

The category of view updates for the Get functor is given by the pullback,

(G ¿ V) �V V

S V V

y
Q1

L1

R1

R1

L1 1V

G

=∆

1V

(4.1)

where the outer rectangle commutes up to a natural transformation – : GL1 ∆ R1.
This pullback is identified as the comma category, hence the notation (G ¿ V), and
we will freely interchange the use of the “universal property of the pullback” and the
“universal property of the comma category” in this section. This universal property
induces a canonical factorisation of functor �G : �S æ �V, depicted in the following
diagram:

�S (G ¿ V) �V

S S V

L1

G

�G

y
L1

Q1

L1

G

Remark. If the functor G : �S æ (G ¿ V) is an isomorphism, the functor G : S æ V
is called a discrete opfibration.

The universal property for the category of view updates may be used to induce two
other canonical functors which will be important in constructing a double category ⇤
whose category of morphisms is (G ¿ V) and whose category of objects is S.

Firstly, we define a candidate for the identity map via the following diagram where
the outer rectangle commutes:

S (G ¿ V) V

S S V

G

1S

÷

L1

R1

1V

G

– (4.2)
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Next we extend the diagram (4.1) to define the category (R1 ¿ V) as a pullback of
the functors R1 : (G ¿ V) æ V and L1 : �V æ V,

(R1 ¿ V) �V ◊V �V �V V

(G ¿ V) �V V V

S V V

y

R2

Q2

L2

y
R2

L2

R1

L1 1V

y
Q1

L1

R1

L1

=∆

1V

1V

G

=∆

1V

(4.3)

where the rectangle formed by the three upper squares commutes up to a natural
transformation — : R1L2 ∆ R2. Here we again identify the comma category (R1 ¿ V)
as a particular pullback, as shown in Section 2.3, and use the pullback pasting lemma.

We define a candidate for the composition map via the following diagram,

(R1 ¿ V) (G ¿ V) V

(G ¿ V) S V

R2

L2

µ

L1

R1

1V

L1 G

– (4.4)

where the outer rectangle commutes up to —– : GL1L2 ∆ R2.
Altogether the diagrams (4.1), (4.2), and (4.4) suggest the definition of a double

category ⇤ whose category of objects is �0 := S and whose category of morphisms
is �1 := (G ¿ V). We already have suitable candidates for a potential domain map
L1 : (G ¿ V) æ S, a potential identity map ÷ : S æ (G ¿ V), and a potential composi-
tion map µ : (R1 ¿ V) æ (G ¿ V). A suitable candidate for the codomain map will be
obtained from the Put functor in the next section.

4.2 The Put functor
The backwards direction of a c-lens � : S ⌦ V is given by the functor,

P1 : (G ¿ V) ≠æ S (Put)

called the Put functor, satisfying the following commutative diagrams:

(G ¿ V)

S V

P1 R1

G

(G ¿ V)

S S

P1÷

1S

(R1 ¿ V) (G ¿ V)

(G ¿ V) S

µ

P2

P1

P1

(4.5)

This is exactly a restatement of the Put functor together with the c-lens laws from
Definition 16.
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Theorem 4. If the quadruple � = (S, V, G, P1) forms a c-lens, then the pair ⇤ =
(�0, �1) = (S, (G ¿ V)) forms a double category.

Proof. Given a c-lens � : S ⌦ V consider the functors,

�0 �1 �2÷

L1

P1
µ

denoting the candidates for the domain, codomain, identity, and composition maps
for a prospective double category ⇤ with category of objects �0 = S, category of
morphisms �1 = (G ¿ V), and category of composable morphisms �2 = (R1 ¿ V).

Given the functor ÷ : S æ (G ¿ V) defined in (4.2) we have,

S

S (G ¿ V) S

1S 1S
÷

L1 P1

where the left-hand triangle commutes by construction and the right-hand triangle
commutes by the Get-Put law. Therefore the functor ÷ : S æ (G ¿ V) satisfies the
diagrams for the identity map of a double category.

In order to show that the diagrams for composition are satisfied, we must first show
that the prospective category of composable morphisms �2 = (R1 ¿ V) arises as the
pullback of the presumptive domain and codomain maps:

? (G ¿ V) �V

(G ¿ V) S V

y y
Q1

L1 L1

P1 G

(4.6)

Now given that the right-hand square of (4.6) is a pullback, the well-known pullback

pasting lemma states that the left-hand square is a pullback if and only if the outer
rectangle is a pullback. We have that GP1 = R1 = R1Q1 : (G ¿ V) æ V by the
Put-Get law, and the pullback of this functor along L1 : �V æ V was computed in
(4.3), yielding a solution to (4.6) given by the following diagram,

(R1 ¿ V) (G ¿ V) �V

(G ¿ V) S V

y

R2Q2

P2

L2
y

Q1

L1 L1

R1

P1 G

(4.7)

where the functor P2 : (R1 ¿ V) æ (G ¿ V), occasionally known as the iterated Put
functor, is induced by the universal property of the right-hand pullback square. There-
fore �2 = (R1 ¿ V) is well-defined as the category of composable morphisms.
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Given the functor µ : (R1 ¿ V) æ (G ¿ V) defined in (4.4) we have,

(G ¿ V) (R1 ¿ V) (G ¿ V)

S (G ¿ V) S
L1

L2 P2

µ P1

L1 P1

where the left-hand square commutes by construction and the right-hand square com-
mutes by the Put-Put law. Therefore the functor µ : (R1 ¿ V) æ (G ¿ V) satisfies the
diagrams for the composition maps of a double category.

The proof that composition is unital and associative may be outlined as follows:
first construct the appropriate universal functor as in Definition 1, then compose with
the composition functor µ, and finally use the universal property of the comma category
to show the corresponding diagrams hold. We omit the routine verification of these
details.

Definition 17. Given a c-lens � : S ⌦ V, its double category of view updates ⇤ is
given by the following categories and functors:

�0 �1 �2÷

L1

P1

µ

L2

P2

Recall that the comma category (G ¿ V) whose comma square commutes up to
a natural transformation – : GL1 ∆ R1, has objects given by pairs (S, – : GS æ V ),
where S is an object of S and – is a morphism of V (by an abuse of notation), and
morphisms given by pairs Èf, gÍ : (S, –) æ (S Õ

, –
Õ), where f : S æ S

Õ is a morphism in
S, and g : V æ V

Õ is a morphism in V, such that g ¶ – = –
Õ ¶ Gf .

We denote an arbitrary 2-cell of the double category ⇤ by a commutative square,
where we recall by the Put-Get law that GP = R1:

GS V

GS
Õ

V
Õ

–

G(f) g

–
Õ

=
GS GP (S, –)

GS
Õ

GP (S Õ
, –

Õ)

–

G(f) GP Èf,gÍ

–
Õ

Similarly to the double category of squares, the domain, identity, and codomain
maps of the the double category of view updates form an adjoint triple in a result
analogous to Lemma 1. A reference for this result is [14].

Lemma 5. The unit is left-adjoint right-inverse to the left projection ÷ ‰ L1 with

counit Á : ÷L1 ∆ 1(G¿V) defined by the whiskered natural transformations:

L1Á = 1L1 : L1 ∆ L1 R1Á = – : GL1 ∆ R1.

Dually, the unit is right-adjoint right-inverse to the Put functor P1 ‰ ÷ with unit

’ : 1(G¿V) ∆ ÷P1 defined by the whiskered natural transformations:

L1’ = P1Á : L1 ∆ P1 R1’ = 1R1 : R1 ∆ R1.
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Given an object (S, – : GS æ V ) of the category of view updates (G ¿ V), the
components of the counit Á and the unit ’ are given by the following commutative
squares, respectively:

GS GS

GS V

1GS

G(1S) –

–

GS V

GP (S, –) V

–

GP È1S ,–Í 1V

1V

4.3 A c-lens as a commuting triangle of double functors
Consider a c-lens � : S ⌦ V together with the corresponding view update double
category ⇤ = (S, (G ¿ V)). We now introduce two canonical double functors to the
double categories of squares induced by the source and view categories, which will form
a commuting triangle with the double functor induced Get functor.

Firstly, using Lemma 5 and the universal property of the comma category we may
define a functor K : (G ¿ V) æ �S via the following diagram:

(G ¿ V)

S S

S

L1 P1

1S

P1Á

1S

=

(G ¿ V)

�S

S S

S

L1 P1
K

L1 R1

1S

„

1S

Recall from (4.1) we also have a functor Q1 : (G ¿ V) æ �V from the category of view
updates to the arrow category of the view.

There is a double functor K : ⇤ æ sq(S) consisting of a pair of functors,

1S : S ≠æ S K : (G ¿ V) ≠æ �S
which, due to the Get-Put and Put-Put laws, satisfies the following commutative dia-
grams:

S (G ¿ V) S

S �S S

1S

L1 P1

K 1S

L1 R1

S (G ¿ V) (R1 ¿ V)

S �S �S ◊S �S

÷

1S K

µ

K◊K

� µ

There is also a double functor Q1 : ⇤ æ sq(V) consisting of a pair of functors,

G : S æ V Q1 : (G ¿ V) æ �V
which, due to the Put-Get law, satisfies the following commutative diagrams:

S (G ¿ V) S

V �V V
G

R1

L1 P1

Q1 G

L1 R1

S (G ¿ V) (R1 ¿ V)

V �V �V ◊V �V

÷

G Q1

µ

Q1◊Q1

� µ
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Furthermore, using the universal property of the comma category together with the
Get-Put law we may show that sq(G)K = Q : ⇤ æ sq(V), which may be expanded into
the following commutative triangle of double categories and double functors:

(G ¿ V)

S

S V

�S �V

Q1K

P1 L1

G1S

G

R1

L1

�G

R1

L1

(4.8)

Corollary 6. The quadruple � = (S, V, G, P1) forms a c-lens if and only if the diagram

(4.8) forms a commuting triangle of double categories and double functors.

It is interesting that the construction of a c-lens which is based entirely on small
categories and functors can be naturally stated as a commuting diagram in Dbl. One
of the primary benefits of this formulation is the natural definition for composition of
c-lenses as morphisms between categories.

4.4 The category Clens
We wish to construct a category Clens whose objects are categories and whose mor-
phisms are c-lenses. Such composition is hinted at in [7] however it was not explored in
detail. Here we motivate the composition of c-lenses from first principles, and show it
coincides with the pullback of their representation as a commuting triangle of double
functors.

Given a pair of c-lenses � : S ⌦ V and �Õ : V ⌦ U, we define the Get functor of the
composite c-lens �Õ ¶ � : S ⌦ U to be the composite functor G

Õ
G : S æ U. Mirroring

the construction in (4.1), the category of view updates for the composite Get functor
is given by the pullback:

(GÕ
G ¿ U) �U U

S U U

y
‚Q1

‚L1

‚R1

R1

L1 1U

G
Õ
G

=∆

1U

(4.9)

To define the Put functor for the composite c-lens, we first consider the decomposition
of the square (4.9) which, by the pullback pasting lemma, is a pullback if and only if
the right-hand square below is a pullback:

(GÕ
G ¿ U) (GÕ ¿ U) �U

S V U

y
G◊1�U

‚L1

‚Q1

y
Q

Õ
1

L1 L1

G G
Õ
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However using the definition of the functor K
Õ : (GÕ ¿ U) æ �V, the left-hand

square above is a pullback if and only if the top-left-hand square below is a pullback:

(GÕ
G ¿ U) (GÕ ¿ U) �U

(G ¿ V) �V

S V U

y
G◊1�U

È‚L1,K
Õ(G◊1�U)Í

y
K

Õ

Q
Õ
1

L1

y
Q1

L1 L1

G

L1

G
Õ

Thus we may define the Put functor for the composite c-lens to be the functor:

(GÕ
G ¿ U) (G ¿ V) S

È‚L1,K
Õ(G◊1�U)Í

P1È‚L1,K
Õ(G◊1�U)Í

P1

We omit the details showing that this Put functor satisfies the three c-lens laws.

Definition 18. Given c-lenses � = (S, V, G, P1) and �Õ = (V, U, G
Õ
, P

Õ
1) their com-

posite c-lens �Õ ¶ � : S ⌦ U consists of the Get functor,

G
Õ
G : S ≠æ U

together with the Put functor:

P1È ‚L1, K
Õ(G ◊ 1�U)Í : (GÕ

G ¿ V) æ U.

The identity c-lens is given by the quadruple 1S = (S, S, 1S, R1).

Now consider a pair of c-lenses � : S ⌦ V and �Õ : V ⌦ U and their representation
as commuting triangles of double functors:

⇤ ⇤Õ

sq(S) sq(V) sq(U)

K Q1 KÕ QÕ
1

sq(G) sq(GÕ)

(4.10)

Given the composite c-lens �Õ ¶ � : S ⌦ U, by Theorem 4 there is a double category
of view updates ⇤Õ ¶ ⇤ defined by the categories,

(�Õ ¶ �)0 := S (�Õ ¶ �)1 := (GÕ
G ¿ U)

and by Corollary 6 we have commutative diagrams for the categories of objects and
the categories of morphisms, respectively:

S

S V

S V U

G1S y

G1S G
Õ1V

G G
Õ

(GÕ
G ¿ V)

(G ¿ V) (GÕ ¿ U)

�S �V �U

yÈ‚L1,K
Õ(G◊1�U)Í G◊1�U

K Q1 K
Õ Q

Õ
1

�G �G
Õ
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These combine to yield the following commutative diagram of double categories and
double functors:

⇤Õ ¶ ⇤

� �Õ

sq(S) sq(V) sq(U)

y‚KÕ „Q1

K Q1 KÕ QÕ
1

sq(G) sq(GÕ)

(4.11)

Thus the composition of a pair of c-lenses (4.10) given in Definition 18 may be charac-
terised by the specific choice of pullback ⇤Õ ¶ ⇤ to yield a commuting triangle of double
functors (4.11).

Definition 19. Let Clens be the category of c-lenses whose objects are small cate-
gories, whose morphisms are c-lenses, and whose composition is given by Definition 18.

Remark. The category Clens is well-defined: the composition of c-lenses is unital and
associative, as it arises from the composition of the underlying Get functors, which is
unital and associative.
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5
Internal characterisation of d-lenses

Consider a pair of small categories S and V called the source category and view category,
respectively. The objects of both categories are called states while the morphisms are
usually called updates.

Definition 20. A d-lens � : S ⌦ V is a quadruple � = (S, V, G, k) consisting of a
functor,

G : S ≠æ V (Get)

together with a function,
k : S0 ◊V0 V1 ≠æ S1 (Put)

satisfying the following commutative diagrams called the d-lens laws:

S0 ◊V0 V1

S1 S0

k l1

l1

S0 ◊V0 V1

S1 V1

k q1

g1

S0 ◊V0 V1

S0 S1

ki

i

S0 ◊V0 V1 ◊V0 V1 S0 ◊V0 V1

S1 ◊S0 S1 S1

k◊k

1◊c

k

c

In order, these diagrams are known as Put-Dom, Put-Get, Get-Put, and Put-Put.

The definition of a d-lens was first stated equationally by Diskin et al. [6] moti-
vated by practical considerations, and was later revised by Johnson and Rosebrugh
[7] to remove redundant assumptions and highlight similarities with c-lenses while still
retaining the equational style. While our focus is entirely theoretical, we encourage
the reader to consult these papers, and references therein, for additional motivation
behind the practical use of d-lenses.
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Definition 20 is based upon standard definition in [7] with a number of notational
and stylistic di�erences we now remark upon. Firstly we refer to the Put function as
the composite,

S0 ◊V0 V1 S1 S0
k

p1

r1

whereas the literature refers to k : S0 ◊V0 V1 æ S1 as the Put function and uses an
uppercase P notation. What we refer to as the Put-Dom and Put-Get laws for a d-lens
are usually called the Put-Inc and Put-Id laws in the literature. The pullback S0 ◊V0 V1
is usually denoted as the set of objects underlying the comma category (G ¿ V) in the
literature, however by definition these sets are equal. Finally, the functions i and k ◊ k

are defined using the universal property in (5.2) and (5.8), respectively, however may
also be easily understood in the context of the explicit Get-Put and Put-Put laws for a
d-lens in the Introduction.

The goal of this chapter is to provide an entirely theoretical motivation for the
definition of a d-lens within the context of internal category theory. Working internal
to Set, we characterise a d-lens as small category � = (S0, S0 ◊V0 V1), and show this
category takes part in commutative triangle of functors, analogous to the construction
for set-based lenses and c-lenses. We show how these commuting triangles compose,
and conclude with a definition of the category Dlens whose objects are small categories
and whose morphisms are d-lenses.

5.1 The Get functor
Consider a d-lens � : S ⌦ V whose forward direction is given by the Get functor
G : S æ V which, by virtue of being a functor, consists of a pair of functions,

g0 : S0 ≠æ V0 g1 : V0 ≠æ V1 (Get)

satisfying the following commutative diagrams:

S0 S1 S0

V0 V1 V0

g0

l1 r1

g1 g0

l1 r1

S0 S1 S2

V0 V1 V2

i

g0 g1

c

g1◊g1

i c

The set of view updates for the Get functor is given by the pullback,

S0 ◊V0 V1 V1 V0

S0 V0

y
q1

l1

r1

r1

l1

g0

(5.1)

henceforth denoted by �1 := S0 ◊V0 V1. The universal property of the pullback induces
a canonical factorisation of the morphism assignment g1 : S1 æ V1 of a Get functor,



5.1 The Get functor 37

depicted in the following diagram:

S1 �1 V1

S0 S0 V0

l1

Èl1,g1Í

g1

y
l1

q1

l1

g0

The universal property of the pullback for the set of view updates may be used to
induce two other canonical functions, which will be important in constructing a small
category � whose set of morphisms is �1, thus justifying the notation.

Firstly, we define a candidate for the identity map via the following diagram:

S0 �1 V1

S0 S0 V0

1S0

i

ig0

y
l1

q1

l1

g0

(5.2)

Next we extend the diagram (5.1) to include an additional pullback,

�2 V2 V1 V0

�1 V1 V0

S0 V0

y

r2

q2

l2
y

r2

l2

r1

l1

y
q1

l1

r1

l1

g0

(5.3)

where we denote �2 := S0 ◊V0 V1 ◊V0 V1. We define a candidate for the composition
map via the following diagram:

�2 �1 V1

�1 S0 V0

l2

c

cq2

y
l1

q1

l1

l1 g0

(5.4)

Altogether the diagrams (5.1), (5.2) and (5.4) suggest the definition of a small
category � whose set of objects is �0 := S0 and whose set of morphisms is �1. We
already have suitable candidates for the domain map l1 : �1 æ S0, the identity map
i : S0 æ �1 and the composition map c : �2 æ �1. A suitable candidate for the
codomain map will be obtained from the Put function in the next section.
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5.2 The Put function
The backwards direction of a d-lens � : S ⌦ V is given by a function k : �1 æ S1
together with the composite,

�1 S1 S0
k

p1

r1 (Put)

called the Put function, satisfying the following commutative diagrams:

S0 �1 S0

S0 S1 S0

1S0

l1 p1

k 1S0

l1 r1

S0 �1 �2

S0 S1 S2

1S0

i

k

c

k◊k

i c

�1

S1 V1

k q1

g1

(5.5)

The above diagrams are exactly the d-lens laws stated in Definition 20 with the notation
�1 and �2 substituted where appropriate. The only addition is the second commutative
square from the left, which is simply the definition of the Put function.
Note. Both in Definition 20 and in (5.5) the function k ◊ k : �2 æ S2 remains am-
biguously undefined. The concerned reader may substitute the well-defined function
Èkl2, k(r1k ◊ r2)Í : �2 æ S2 for this expression, or wait until (5.8) for the simpler
notation to be defined.
Remark. The definition of the Put function together with the Put-Dom, Get-Put, and
Put-Put law stated in (5.5) appear exactly like the diagrams satisfied by a functor
between small categories, except that � = (�0, �1) is not a small category. However
we will now show that the d-lens laws (5.5) induce the structure of small category on
the pair � = (�0, �1) such the pair of functions 1S0 : �0 æ S0 and k : �1 æ S1 form a
functor K : � æ S.

Theorem 7. If the quadruple � = (S, V, G, k) forms a d-lens, then the pair � =
(�0, �1) = (S0, S0 ◊V0 V1) forms a small category.

Proof. Given a d-lens � : S ⌦ V consider the functions,

�0 �1 �2i

l1

p1

c

denoting the candidates for the domain, codomain, identity, and composition maps
for a prospective small category � with set of objects �0 = S0, set of morphisms
�1 = S0 ◊V0 V1, and set of composable morphisms �2 = S0 ◊V0 V1 ◊V0 V1.

Given the function i : S0 æ �1 defined in (5.2) we have,

S0

S0 �1

i

1S0

l1

S0

�1 S1 S0

i
i

1S0

p1

k r1
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where the left-hand diagram commutes by construction and the right-hand diagram
commutes by the Get-Put law and the structure of S as a small category. Therefore the
function i : S0 æ �1 satisfies the diagrams for the identity map of a small category.

In order to show the diagrams for composition are satisfied, we must first show
that the prospective set of composable morphisms �2 = S0 ◊V0 V1 ◊V0 V1 arises as the
following pullback of the presumptive domain and codomain maps:

? �1 V1

�1 S1 S0 V0

y y
q1

l1 l1

k

p1

r1
g0

(5.6)

Now given the right-hand square of (5.6) is a pullback, the well-known pullback pasting

lemma states that left-hand square is a pullback if and only if the outer rectangle is
a pullback. By the Put-Get law and using that the Get functor G : S æ V preserves
codomains, we have the following commutative pentagon:

�1

S1 V1

S0 V0

p1 r1

k q1

r1

g1

r1

g0

Thus the pullback of the outer rectangle of (5.6) may be computed from the cospan:

V1

�1 S0 V0

l1

r1q1

p1 g0

This pullback was constructed in (5.3), yielding the solution to (5.6) given by the
following diagram,

�2 �1 V1

�1 S0 V0

l2

p2

r2q2

y y
q1

l1 l1

r1q1

p1 g0

(5.7)

where function p2 : �2 æ �1 is induced by the universal property of the right-hand
pullback square. Therefore �2 is well-defined as the set of composable morphisms.

Note. We define the function k ◊ k : �2 æ S2 used in the Put-Put law between the sets
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of composable morphisms via the universal property of the pullback,

�2 S2 S1

�1 S1 S0

l2

k◊k

kp2

y
l2

r2

l1

p1

k r1

(5.8)

where the outer rectangle equals the left-hand square of (5.7) using the Put-Dom law.
Given the function c : �2 æ �1 defined in (5.4) we have,

�1

�1 �2 �2 S2 S1

S0 �1 �1 S1 S0

k

p1

l1

l2

c c

p2

k◊k

c

r2

r1

l1 k

p1

r1

where the left-hand diagram commutes by construction and the right-hand diagram
commutes by the Put-Put law, the structure of S as a category, and diagram (5.8).
Therefore the function c : �2 æ �1 satisfies the diagrams for the composition map of a
small category.

The proof that composition is unital and associative may be outlined as follows.
First construct the appropriate universal function as indicated in Definition 1, consid-
ering �2 as the set of composable morphisms for �, then compose with the composition
map defined in (5.4), and finally show the corresponding diagrams hold through the
universal property of �1 as a pullback in (5.1). We omit the routine verification of
these details.

Definition 21. Given a d-lens � : S ⌦ V, its category of view updates � is given by
the following sets and functions:

�0 �1 �2i

l1

p1

c

l2

p2

5.3 A d-lens as a commuting triangle of functors
Consider a d-lens � : S ⌦ V together with the corresponding view update category
� = (�0, �1) = (S0, S0 ◊V0 V1). We now introduce two canonical functors which will
form a commuting triangle with the Get functor.

Given the Put-Dom, Get-Put, and Put-Put laws in (5.5), there exists a functor
K : � æ S consisting of a pair of functions,

1S0 : S0 ≠æ S0 k : �1 ≠æ S1



5.4 The category Dlens 41

satisfying the following commutative diagrams:

S0 �1 S0

S0 S1 S0

1S0

l1 p1

k 1S0

l1 r1

S0 �1 �2

S0 S1 S2

i

1S0 k

c

k◊k

i c

Given the Put-Get law in (5.5) together with the diagrams (5.1), (5.2), and (5.4),
there exists a functor Q : � æ V consisting of a pair of functions,

g0 : S0 ≠æ V0 q1 : �1 ≠æ V1

satisfying the following commutative diagrams:

S0 �1 S0

V0 V1 V0

g0
x

l1 p1

q1 g0

l1 r1

S0 �1 �2

V0 V1 V2

i

g0 q1

c

q2

i c

Furthermore, we can see from the Put-Get law that GK = Q : � æ V, which may be
expanded into the following commutative triangle of small categories and functors:

�1

S0

S0 V0

S1 V1

q1k

p1 l1

g01S0

g0

r1

l1

g1

r1

l1

(5.9)

Corollary 8. The quadruple � = (S, V, G, k) forms a d-lens if and only if the diagram

(5.9) forms a commuting triangle of small categories and functors.

Thus a d-lens � : S ⌦ V may be understood as simultaneously a functor and a
span of functors between the source and view categories:

�

S V

K Q

G

This allows us characterise a d-lens as a morphism rather than just an object and allows
for a natural definition for composition of d-lenses as morphisms between categories.

5.4 The category Dlens
We wish to construct a category Dlens whose objects are categories and whose mor-
phisms are d-lenses. In the literature [6, 7] an explicit definition for the composite
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of d-lenses is stated, however there is little justification provided outside of practical
considerations. Here we motivate the composition of d-lenses from first principles and
show it coincides with the pullback of their representation as a commuting triangle of
functors.

Given a pair of d-lenses � : S ⌦ V and �Õ : V ⌦ U, we define the Get functor of the
composite d-lens �Õ ¶ � : S ⌦ U to be the composite functor G

Õ
G : S æ U consisting

of a pair of functions:

g
Õ
0 ¶ g0 : S0 ≠æ U0 g

Õ
1 ¶ g1 : S1 ≠æ U1

Mirroring the construction in (5.1), the set of view updates for the composite Get
functor is given by the pullback:

S0 ◊U0 U1 U1

S0 U0

y
‚l1

‚q1

l1

g
Õ
0g0

(5.10)

Defining a natural choice of function S0 ◊U0 U1 æ S1 satisfying the d-lens laws leads
us to consider the decomposition of the square (5.10) which, by the pullback pasting

lemma, is a pullback if and only if the right-hand square below is a pullback:

S0 ◊U0 U1 �Õ
1 U1

S0 V0 U0

y y
q

Õ
1

l1 l1

g0 g
Õ
0

However using the Put-Dom law for the d-lens �Õ : V ⌦ U, the left-hand square above
is a pullback if and only if the top-left-hand square below is a pullback:

S0 ◊U0 U1 �Õ
1 U1

�1 V1

S0 V0 U0

y y
k

Õ

q
Õ
1

l1y
q1

l1 l1

g0

l1

g
Õ
0

(5.11)

The dashed functions in (5.11) above defined using the universal property of the
pullbacks via the following diagrams:

S0 ◊U0 U1 V0 ◊U0 U1 U1

S0 V0 U0

g0◊1U1

‚l1

‚q1

y
l1

q
Õ
1

l1

g0 g
Õ
0
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V0 ◊U0 U1

S0 ◊U0 U1 S0 ◊V0 V1 V1

S0 S0 V0

k
Õ

È‚l1,k
Õ(g0◊1U1 )Í

‚l1

g0◊1U1

y
l1

q1

l1

g0

We now define the Put function for the composite d-lens �Õ ¶ � : S ⌦ U to be:

S0 ◊U0 U1 �1 S1 S0
È‚l1,k

Õ(g0◊1U1 )Í

p1Èl1,k
Õ(g0◊1U1 )Í

k r1 (5.12)

We omit the routine verification that this Put function satisfies the d-lens laws, how-
ever note that it matches exactly the composite Put function given explicitly in the
literature.

Definition 22. Given d-lens � = (S, V, G, k) and �Õ = (V, U, G
Õ
, k

Õ) their composite

d-lens �Õ ¶ � : S ⌦ U consists of the Get functor,

G
Õ
G : S ≠æ U

together with the function:

kÈ‚l1, k
Õ(g0 ◊ 1U1)Í : S ◊U0 U1 ≠æ S1

The identity d-lens is given by the quadruple 1S = (S, S, 1S, 1S1).

Now consider a pair of d-lenses � : S ⌦ V and �Õ : V ⌦ U and their representation
as commuting triangles:

� �Õ

S V U

K Q K
Õ Q

Õ

G G
Õ

(5.13)

Given the composite d-lens �Õ ¶ � : S ⌦ U, by Theorem 7 there is a category of
view updates �Õ ¶ � defined by,

(�Õ ¶ �)0 := S0 (�Õ ¶ �)1 := S0 ◊U0 U1

with Put function (5.12), and by Corollary 8 have commutative diagrams for the sets
of objects and the sets of morphisms, respectively,

(�Õ ¶ �)0

�0 �Õ
0

S0 V0 U0

y1S0 g0

1S0 g0 1V0 g
Õ
0

g0 g
Õ
0

(�Õ ¶ �)1

�1 �Õ
1

S1 V1 U1

yÈ‚l1,k
Õ(g0◊1U1 )Í g0◊1U1

k q1 k
Õ q

Õ
1

g1 g
Õ
1
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which combine to yield the following commutative diagram of small categories and
functors:

�Õ ¶ �

� �Õ

S V U

y„KÕ ‚Q

K Q K
Õ Q

Õ

G G
Õ

(5.14)

Thus the composition of a pair of d-lenses (5.13) given in Definition 22 may be
characterised by the specific choice of pullback �Õ ¶ � to yield a commuting triangle of
functors (5.14).

Definition 23. Let Dlens be the category of d-lenses whose objects are small cate-
gories, whose morphisms are d-lenses, and whose composition is given by Definition 22.

Remark. The category Dlens is well-defined: the composition of lenses is unital and
associative, as it arises from the composition of the underlying Get functors, which is
unital and associative.
Remark. The category Lens forms a full subcategory of Dlens. Every d-lens between
codiscrete categories induces a set-based lens, and vice versa.
Remark. The category Clens forms a subcategory of Dlens. Every c-lens is a d-lens
by considering the underlying horizontal category of each double category.



6
Conclusion

In this thesis, we have shown how set-based lenses, c-lenses, and d-lenses are all di�erent
instances of the same internal construction. In each case, an internal object of view

updates is formed via pullback, as was shown in diagrams (3.1), (4.1), and (5.1):

S ◊ V V ◊ V V

S V {ú}

r1

y
g◊1V

l1
y

r1

l1 !

g !

(G ¿ V) �V V

S V V

y
Q1

L1

R1

R1

L1 1V

G

=∆

1V

S0 ◊V0 V1 V1 V0

S0 V0

y
q1

l1

r1

r1

l1

g0

When placed side-by-side, the similarities between these diagrams are evident; for
example, a set-based lens is exactly a d-lens when the view (and source) categories are
codiscrete V = (V0, V1) = (V, V ◊ V ), while the universal properties of the product
and comma categories exemplify set-based lenses and c-lenses as very special kinds of
lenses internal to Set and Cat, respectively. It is also clear that taking the underlying
objects of the comma category (G ¿ V) yields the pullback S0 ◊V0 V1, thus providing
another way of seeing that every c-lens is a d-lens.

The commonality between the pullbacks defining the object of view updates extends
to the internal “double triangle” diagrams in (3.7), (4.8), and (5.9), which become the
focal point of the thesis. It is the “if and only if” statements of Corollary 3, Corollary 6,
and Corollary 8, to which the title refers — we are characterising set-based lenses, c-
lenses, and d-lenses, respectively, using internal categories. The insight that lenses
can be informally understood as both functors and spans between internal categories
which form a canonical commuting triangle was a surprise. This reinforces the idea
that lenses are morphisms rather than objects. Furthermore there is an aesthetic utility
to defining a lens as a single commuting diagram rather than the previous axiomatic
or equational definitions provided in the literature.

We also wish to emphasise that while heuristically lenses can be said to compose
via pullback of the corresponding commuting triangle representation, this is simply
a convenient way of noticing an isomorphism with the composite category of view
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updates. In reality, the composite lens arises from the composition of the associated Get
functors which of course is strictly associative and unital. This forces the composition
of lenses to be strictly associative and unital, as the particular choice of view update
category is always derived from the pullback of the composed Get along the relevant
domain map.

While it is tempting to draw a definition of internal lenses and see the three kinds
of lens explored as special cases, there are subtle di�erences between them and this
justifies their individual treatment. For example, while Theorem 4 and Theorem 7
require the Put-Get law to ensure the object of composable morphisms is well-defined,
this is not the case for set-based lenses in Theorem 2 where the product can always
be constructed without reference to the Get or Put; however the Put-Get law is still
required for the right-unitality axiom. Meanwhile 2-categorical aspects of Cat are
essential in constructing the arrow and comma categories used for c-lenses, and for
the statements of Lemma 1 and Lemma 5 which arise from the KZ-monad aspects
considered in [5, 14].

Perhaps the most significant di�erence between these three types of lenses is the
necessity of the function k : �1 æ S1 used to induce the Put for a d-lens rather than just
defining the Put alone. The proof of Theorem 7 requires delicate use of the the d-lens
laws to construct a category structure on the pair � = (�0, �1), providing a strong
contrast to the direct proofs for set-based lenses and c-lenses. However this di�erence
essentially arises from the specialness of the universal property associated with the
object of view updates for set-based lenses and c-lenses, so it is not unexpected that
alternative methods are available. It was very surprising however to see the required
d-lens laws were unchanged from the definition in [7], and the fact that each is used
exactly once in the proof of Theorem 7 indicates both the correctness of the internal
characterisation and the appropriateness of d-lenses, which were previously thought to
be an unpleasant practical compromise in constrast to the universality of c-lenses.

There are a number of results which are outside the scope of this thesis but are
worth mentioning briefly. Given that c-lenses are equivalent to split opfibrations, there
is another well-known characterisation as functors V æ Cat which assign to each
view state its fibre category. Therefore a c-lens requires there to be functors between
the fibre categories, while the Grothendieck construction produces a c-lens from each
functor V æ Cat, providing an incidental connection to work on so-called Put-based
lenses [15, 16] by the bidirectional transformation community. For the case of lenses
where the view category is codiscrete, it was shown in [12] that the fibres are all
isomorphic to each other, forcing the Get to simply be a projection from a product
of sets. The case of d-lenses, however, had not been previously explored, and was
found to correspond to functions (or object assignments) between the fibre categories.
This seemingly abnormal point-of-view warrants further investigation, particularly the
possible formation of a 2-category of small categories, “functions”, and “unnatural
transformations” in which d-lenses could be fibred.

There are also a number of 2-categorical and double categorical aspects of c-lenses
which deserve further treatment in an internal context. Notably the Chevalley Crite-

rion, first recorded by Gray [17] and treated abstractly by Street [5], which states that
the functor K : (G ¿ V) æ �S is a left-adjoint right-inverse functor. The counit of the
adjunction can be shown to arise from Lemma 5 and depicts the universal or “least-
change” nature of the opcartesian lifts of a c-lens. The primary di�erence between
c-lenses and d-lenses is the presence of this universal property, and its importance for
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possible practical applications provides the rationale for further study here. In ad-
dition, we recall a c-lens can be understood as a double category of view updates,
whose horizontal morphisms are the opcartesian lifts, and whose vertical morphisms
are all source updates. The Grothendieck construction suggests an alternative where
the vertical morphisms are simply those contained in the fibres, and exploration of this
potential sub-double category is planned.

Finally, this thesis inspires many enticing possibilities for future work. Extending
our internal treatment of asymmetric lenses to their symmetric counterparts is a prior-
ity, and it is hoped using internal profunctors may provide a link to the growing body of
work [13, 18, 19] on profunctor optics. With most research focused on the local proper-
ties of individual lenses, there are many unexplored avenues into the global properties
of the categories Lens, Clens, and Dlens; one interesting thread could be to show
these categories have all pullbacks and thus allow the possibility of constructing lenses
out of lenses. This thesis began as a quest to find a way to incorporate uncertainty
into d-lenses inspired by the work of Diskin [20], and recent work by DeWolf [21] on re-
striction double categories together with further study into internal lenses may provide
the missing link to achieve this goal.
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